Publications by Year: 2014
2014
BACKGROUND: Universities have begun deploying public Internet systems that allow for easy search of their experts, expertise, and intellectual networks. Deployed first in biomedical schools but now being implemented more broadly, the initial motivator of these research networking systems was to enable easier identification of collaborators and enable the development of teams for research.
OBJECTIVE: The intent of the study was to provide the first description of the usage of an institutional research "social networking" system or research networking system (RNS).
METHODS: Number of visits, visitor location and type, referral source, depth of visit, search terms, and click paths were derived from 2.5 years of Web analytics data. Feedback from a pop-up survey presented to users over 15 months was summarized.
RESULTS: RNSs automatically generate and display profiles and networks of researchers. Within 2.5 years, the RNS at the University of California, San Francisco (UCSF) achieved one-seventh of the monthly visit rate of the main longstanding university website, with an increasing trend. Visitors came from diverse locations beyond the institution. Close to 75% (74.78%, 208,304/278,570) came via a public search engine and 84.0% (210 out of a sample of 250) of these queried an individual's name that took them directly to the relevant profile page. In addition, 20.90% (214 of 1024) visits went beyond the page related to a person of interest to explore related researchers and topics through the novel and networked information provided by the tool. At the end of the period analyzed, more than 2000 visits per month traversed 5 or more links into related people and topics. One-third of visits came from returning visitors who were significantly more likely to continue to explore networked people and topics (P<.001). Responses to an online survey suggest a broad range of benefits of using the RNS in supporting the research and clinical mission.
CONCLUSIONS: Returning visitors in an ever-increasing pool of visitors to an RNS are among those that display behavior consistent with using the tool to identify new collaborators or research topics. Through direct user feedback we know that some visits do result in research-enhancing outcomes, although we cannot address the scale of impact. With the rapid pace of acquiring visitors searching for individual names, the RNS is evolving into a new kind of gateway for the university.
OBJECTIVE: Understanding population-level health trends is essential to effectively monitor and improve public health. The Office of the National Coordinator for Health Information Technology (ONC) Query Health initiative is a collaboration to develop a national architecture for distributed, population-level health queries across diverse clinical systems with disparate data models. Here we review Query Health activities, including a standards-based methodology, an open-source reference implementation, and three pilot projects.
MATERIALS AND METHODS: Query Health defined a standards-based approach for distributed population health queries, using an ontology based on the Quality Data Model and Consolidated Clinical Document Architecture, Health Quality Measures Format (HQMF) as the query language, the Query Envelope as the secure transport layer, and the Quality Reporting Document Architecture as the result language.
RESULTS: We implemented this approach using Informatics for Integrating Biology and the Bedside (i2b2) and hQuery for data analytics and PopMedNet for access control, secure query distribution, and response. We deployed the reference implementation at three pilot sites: two public health departments (New York City and Massachusetts) and one pilot designed to support Food and Drug Administration post-market safety surveillance activities. The pilots were successful, although improved cross-platform data normalization is needed.
DISCUSSIONS: This initiative resulted in a standards-based methodology for population health queries, a reference implementation, and revision of the HQMF standard. It also informed future directions regarding interoperability and data access for ONC's Data Access Framework initiative.
CONCLUSIONS: Query Health was a test of the learning health system that supplied a functional methodology and reference implementation for distributed population health queries that has been validated at three sites.
We describe the architecture of the Patient Centered Outcomes Research Institute (PCORI) funded Scalable Collaborative Infrastructure for a Learning Healthcare System (SCILHS, http://www.SCILHS.org) clinical data research network, which leverages the $48 billion dollar federal investment in health information technology (IT) to enable a queryable semantic data model across 10 health systems covering more than 8 million patients, plugging universally into the point of care, generating evidence and discovery, and thereby enabling clinician and patient participation in research during the patient encounter. Central to the success of SCILHS is development of innovative 'apps' to improve PCOR research methods and capacitate point of care functions such as consent, enrollment, randomization, and outreach for patient-reported outcomes. SCILHS adapts and extends an existing national research network formed on an advanced IT infrastructure built with open source, free, modular components.