Venous thromboembolism occurs frequently in patients with cancer who have brain metastases, but there is limited evidence supporting the safety of therapeutic anticoagulation. To assess the risk for intracranial hemorrhage associated with the administration of therapeutic doses of low-molecular-weight heparin, we performed a matched, retrospective cohort study of 293 patients with cancer with brain metastases (104 with therapeutic enoxaparin and 189 controls). A blinded review of radiographic imaging was performed, and intracranial hemorrhages were categorized as trace, measurable, and significant. There were no differences observed in the cumulative incidence of intracranial hemorrhage at 1 year in the enoxaparin and control cohorts for measurable (19% vs 21%; Gray test, P = .97; hazard ratio, 1.02; 90% confidence interval [CI], 0.66-1.59), significant (21% vs 22%; P = .87), and total (44% vs 37%; P = .13) intracranial hemorrhages. The risk for intracranial hemorrhage was fourfold higher (adjusted hazard ratio, 3.98; 90% CI, 2.41-6.57; P < .001) in patients with melanoma or renal cell carcinoma (N = 60) than lung cancer (N = 153), but the risk was not influenced by the administration of enoxaparin. Overall survival was similar for the enoxaparin and control cohorts (8.4 vs 9.7 months; Log-rank, P = .65). We conclude that intracranial hemorrhage is frequently observed in patients with brain metastases, but that therapeutic anticoagulation does not increase the risk for intracranial hemorrhage.
Publications by Year: 2015
2015
Federated networks of clinical research data repositories are rapidly growing in size from a handful of sites to true national networks with more than 100 hospitals. This study creates a conceptual framework for predicting how various properties of these systems will scale as they continue to expand. Starting with actual data from Harvard's four-site Shared Health Research Information Network (SHRINE), the framework is used to imagine a future 4000 site network, representing the majority of hospitals in the United States. From this it becomes clear that several common assumptions of small networks fail to scale to a national level, such as all sites being online at all times or containing data from the same date range. On the other hand, a large network enables researchers to select subsets of sites that are most appropriate for particular research questions. Developers of federated clinical data networks should be aware of how the properties of these networks change at different scales and design their software accordingly.
PURPOSE: To understand the disciplinary contexts in which faculty work, the authors examined demographics, professional characteristics, research productivity, and advancement across seven clinical departments at Harvard Medical School (HMS) and nationally.
METHOD: HMS analyses included faculty from seven clinical departments-anesthesiology, medicine, neurology, pediatrics, psychiatry, radiology, and surgery-in May 2011 (N = 7,304). National analyses included faculty at 141 U.S. medical schools in the same seven departments as of December 31, 2011 (N = 91,414). The authors used chi-square and Wilcoxon Mann-Whitney tests to compare departmental characteristics.
RESULTS: Heterogeneity in demographics, professional characteristics, and advancement across departments was observed in HMS and national data. At HMS, psychiatry had the highest percentage of underrepresented minority faculty at 6.6% (75/1,139). In anesthesiology, 24.2% (128/530) of faculty were Asian, whereas in psychiatry only 7.9% (90/1,139) were (P < .0001). Female faculty were the majority in pediatrics and psychiatry, whereas in surgery 26.3% (172/654) of the faculty were female (P < .0001). At HMS, surgery, radiology, and neurology had the shortest median times to promotion and the highest median number of publications, H-index, and second-degree centrality. Neurology also had the highest percentage of faculty who had been principal investigators on a National Institutes of Health-funded grant.
CONCLUSIONS: There were differences in demographics, professional characteristics, and advancement across clinical departments at HMS and nationally. The context in which faculty work, of which department is a proxy, should be accounted for in research on faculty career outcomes and diversity inclusion in academic medicine.