Publications by Year: 2009

2009

Nucera, Carmelo, Melanie Goldfarb, Richard Hodin, and Sareh Parangi. (2009) 2009. “Role of B-Raf(V600E) in Differentiated Thyroid Cancer and Preclinical Validation of Compounds Against B-Raf(V600E).”. Biochimica et Biophysica Acta 1795 (2): 152-61. https://doi.org/10.1016/j.bbcan.2009.01.003.

B-Raf(V600E), an oncogenic protein kinase, is the most frequent genetic alteration in papillary thyroid carcinomas (PTC). PTC represents 80-90% of all thyroid cancers and over the past five years, more than 200 manuscripts have been published about the relationship between "B-Raf(V600E) and thyroid cancer". B-Raf(V600E) genetically arises from a transversion point mutation (valine-to-glutamate substitution at amino acid residue-600, V600E) and leads to over activation of the mitogen-activated protein kinases (MAPK) signaling pathway. The MAPK pathway is essential for transmitting proliferation signals generated by cell surface receptors and cytoplasmic signaling elements to the nucleus. In many cancers, including thyroid cancer, B-Raf(V600E) appears to play a crucial role in cell proliferation, survival and de-differentiation. In thyroid cancer, the V600E mutation occurs with greater frequently in aggressive subtypes of PTC, and in individuals that present at advanced stages of disease with extra-thyroidal extension and/or lymph node metastases. B-Raf(V600E) is considered a marker of aggressive disease in both PTC (>1 cm) and micro-PTC (</=1 cm), and interestingly, is associated with both loss of I-131 avidity and PTC recurrence. Though treatment of patients with thyroid cancer is usually successful and most patients are rendered disease-free, to date there are no effective therapies for patients with invasive, non-radioiodine sensitive tumors or metastatic disease. In this article we will review the relation between B-Raf(V600E) and PTC, as well as both non-selective and selective pharmacological agents currently under investigation for treatment of B-Raf(V600E) positive PTC.

Nucera, Carmelo, Matthew A Nehs, Michal Mekel, Xuefeng Zhang, Richard Hodin, Jack Lawler, Vânia Nose, and Sareh Parangi. (2009) 2009. “A Novel Orthotopic Mouse Model of Human Anaplastic Thyroid Carcinoma.”. Thyroid : Official Journal of the American Thyroid Association 19 (10): 1077-84. https://doi.org/10.1089/thy.2009.0055.

BACKGROUND: Orthotopic mouse models of human cancer represent an important in vivo tool for drug testing and validation. Most of the human thyroid carcinoma cell lines used in orthotopic or subcutaneous models are likely of melanoma and colon cancer. Here, we report and characterize a novel orthotopic model of human thyroid carcinoma using a unique thyroid cancer cell line.

METHODS: We used the cell line 8505c, originated from a thyroid tumor histologically characterized by anaplastic carcinoma cell features. We injected 8505c cells engineered using a green fluorescent protein-positive lentiviral vector orthotopically into the thyroid of severe combined immunodeficient mice.

RESULTS: Orthotopic implantation with the 8505c cells produced thyroid tumors after 5 weeks, showing large neck masses, with histopathologic features of a high-grade neoplasm (anaplasia, necrosis, high mitotic and proliferative indexes, p53 positivity, extrathyroidal invasion, lymph node and distant metastases) and immunoprofile of follicular thyroid cell origin with positivity for thyroid transcription factor-1 and PAX8, and for cytokeratins.

CONCLUSIONS: Here we describe a novel orthotopic thyroid carcinoma model using 8505c cells. This model can prove to be a reliable and useful tool to investigate in vivo biological mechanisms determining thyroid cancer aggressiveness, and to test novel therapeutics for the treatment of refractory or advanced thyroid cancers.

Nucera, Carmelo, Jerome Eeckhoute, Stephen Finn, Jason S Carroll, Azra H Ligon, Carmen Priolo, Guido Fadda, et al. (2009) 2009. “FOXA1 Is a Potential Oncogene in Anaplastic Thyroid Carcinoma.”. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research 15 (11): 3680-9. https://doi.org/10.1158/1078-0432.CCR-08-3155.

PURPOSE: FOXA1 is a mammalian endodermal transcription factor belonging to the human forkhead box gene family that plays a role in certain tumor types. Here, we investigated the potential role of FOXA1 in human thyroid carcinomas.

EXPERIMENTAL DESIGN: We examined the level of FOXA1 expression and gene copy number by immunohistochemistry and fluorescence in situ hybridization, respectively, in a cohort of benign and malignant thyroid tumors. In addition, we examined the role of FOXA1 in the proliferation of an undifferentiated thyroid carcinoma cell line by short hairpin RNA-mediated silencing.

RESULTS: We show that FOXA1 is overexpressed in human anaplastic thyroid carcinomas (ATC). In addition, we identify FOXA1 DNA copy number gain within the 14q21.1 locus in both an ATC cell line and human ATC cases. Silencing of FOXA1 in an ATC cell line causes G(1) growth arrest and reduction of cell proliferation. Moreover, we observe a potential link between FOXA1 and the cell cycle machinery by identifying p27(kip1) up-regulation on FOXA1 silencing.

CONCLUSIONS: FOXA1 is overexpressed in aggressive thyroid cancers and involved in cell cycle progression in an ATC cell line. Therefore, FOXA1 may be an important oncogene in thyroid tumorigenesis and a potential new therapeutic target for the treatment of anaplastic thyroid cancers.