Publications

2014

Owais K, Taylor C, Jiang L, et al. Tricuspid annulus: a three-dimensional deconstruction and reconstruction.. Ann Thorac Surg. 2014;98(5):1536-42. doi:10.1016/j.athoracsur.2014.07.005
BACKGROUND: Before clinical manifestation of regurgitation, the tricuspid annulus dilates and flattens when right ventricular dysfunction is potentially reversible. That makes the case for a prophylactic tricuspid annuloplasty even in the absence of significant tricuspid regurgitation. Owing to the appreciation of the favorable prognostic value of tricuspid annuloplasty, the geometry of the normal tricuspid annulus merits critical analysis. METHODS: Three-dimensional transesophageal echocardiographic data from 26 patients were analyzed using Image Arena (TomTec, Munich, Germany) software. Cartesian coordinate data from tricuspid annuli were exported to MATLAB (Mathworks, Natick, MA) for further processing. Annular metrics related to size, shape, and motion were computed. RESULTS: The tricuspid annulus demonstrated significant changes in area (p0.01) and perimeter (p0.03) during the cardiac cycle, with maximum values attained at end diastole. There was significant correlation between two- and three-dimensional area changes, indicating true expansion in the annulus. The anterolateral region of the annulus demonstrated the greatest dynamism (p0.01), and the anteroseptal region showed the least. The anteroseptal region also displayed the most nonplanarity in the annulus. In addition, vertical translational motion was observed, with a mean distance of 11.3±3.7 mm between end systolic and end diastolic annular centroids. CONCLUSIONS: The tricuspid annulus is a dynamic, multiplanar structure with heterogeneous regional behavior. These characteristics should be taken into account for optimal annuloplasty device design and efficacy.
Jiang L, Owais K, Matyal R, et al. Dynamism of the mitral annulus: a spatial and temporal analysis.. J Cardiothorac Vasc Anesth. 2014;28(5):1191-7. doi:10.1053/j.jvca.2014.03.020
OBJECTIVE: In this study, the authors sought to investigate the extent and timing of changes in mitral annular area during the cardiac cycle. Particularly, the authors assessed whether these changes were limited to the posterior part of the annulus or were more global in nature. DESIGN: Prospective, observational study SETTING: Tertiary care university hospital PARTICIPANTS: Twenty three patients undergoing non-valvular cardiac surgery and 3 patients undergoing vascular procedures. INTERVENTIONS: Intraoperative 3-dimensional transesophageal echocardiographic data obtained from patients with normal mitral valves undergoing non-valvular cardiac surgery were analyzed geometrically. Annular areas and diameters were measured during various stages of the cardiac cycle. Intertrigonal distance also was measured using 3D data. MEASUREMENTS AND MAIN RESULTS: Both anterior and posterior portions of the mitral annulus demonstrated dynamism throughout the cardiac cycle. The expansion phase ranged from mid-systole to early-diastole, whereas mid-diastole to early-systole was characterized by an annular contraction phase. Area changes were contributed equally by anterior and posterior parts of the annulus. Annular dimensions increased in accordance with mitral annular area (p0.05). Echocardiographically-identified intertrigonal distance showed the least delta change. CONCLUSIONS: Both the anterior and posterior parts of the annulus contribute to changes in mitral annular area, which undergoes discrete expansion and contraction phases that extend into both systole and diastole. Compared to other annular dimensions, the echocardiographically-identified intertrigonal distance does not change significantly during the cardiac cycle.
Li Z, Roussakis E, Koolen P, et al. Non-invasive transdermal two-dimensional mapping of cutaneous oxygenation with a rapid-drying liquid bandage.. Biomed Opt Express. 2014;5(11):3748-64. doi:10.1364/BOE.5.003748
Oxygen plays an important role in wound healing, as it is essential to biological functions such as cell proliferation, immune responses and collagen synthesis. Poor oxygenation is directly associated with the development of chronic ischemic wounds, which affect more than 6 million people each year in the United States alone at an estimated cost of $25 billion. Knowledge of oxygenation status is also important in the management of burns and skin grafts, as well as in a wide range of skin conditions. Despite the importance of the clinical determination of tissue oxygenation, there is a lack of rapid, user-friendly and quantitative diagnostic tools that allow for non-disruptive, continuous monitoring of oxygen content across large areas of skin and wounds to guide care and therapeutic decisions. In this work, we describe a sensitive, colorimetric, oxygen-sensing paint-on bandage for two-dimensional mapping of tissue oxygenation in skin, burns, and skin grafts. By embedding both an oxygen-sensing porphyrin-dendrimer phosphor and a reference dye in a liquid bandage matrix, we have created a liquid bandage that can be painted onto the skin surface and dries into a thin film that adheres tightly to the skin or wound topology. When captured by a camera-based imaging device, the oxygen-dependent phosphorescence emission of the bandage can be used to quantify and map both the pO2 and oxygen consumption of the underlying tissue. In this proof-of-principle study, we first demonstrate our system on a rat ischemic limb model to show its capabilities in sensing tissue ischemia. It is then tested on both ex vivo and in vivo porcine burn models to monitor the progression of burn injuries. Lastly, the bandage is applied to an in vivo porcine graft model for monitoring the integration of full- and partial-thickness skin grafts.
Mahmood F, Owais K, Montealegre-Gallegos M, et al. Echocardiography derived three-dimensional printing of normal and abnormal mitral annuli.. Ann Card Anaesth. 2014;17(4):279-83. doi:10.4103/0971-9784.142062
AIMS AND OBJECTIVES: The objective of this study was to assess the clinical feasibility of using echocardiographic data to generate three-dimensional models of normal and pathologic mitral valve annuli before and after repair procedures. MATERIALS AND METHODS: High-resolution transesophageal echocardiographic data from five patients was analyzed to delineate and track the mitral annulus (MA) using Tom Tec Image-Arena software. Coordinates representing the annulus were imported into Solidworks software for constructing solid models. These solid models were converted to stereolithographic (STL) file format and three-dimensionally printed by a commercially available Maker Bot Replicator 2 three-dimensional printer. Total time from image acquisition to printing was approximately 30 min. RESULTS: Models created were highly reflective of known geometry, shape and size of normal and pathologic mitral annuli. Post-repair models also closely resembled shapes of the rings they were implanted with. Compared to echocardiographic images of annuli seen on a computer screen, physical models were able to convey clinical information more comprehensively, making them helpful in appreciating pathology, as well as post-repair changes. CONCLUSIONS: Three-dimensional printing of the MA is possible and clinically feasible using routinely obtained echocardiographic images. Given the short turn-around time and the lack of need for additional imaging, a technique we describe here has the potential for rapid integration into clinical practice to assist with surgical education, planning and decision-making.