Publications

2020

Yu Z, Ma S, Wu M, Cui H, Wu R, Chen S, Xu C, Lu X, Feng S. Self-assembling hydrogel loaded with 5-FU PLGA microspheres as a novel vitreous substitute for proliferative vitreoretinopathy. J Biomed Mater Res A. 2020;108(12):2435–2446.
The vitreous substitute for proliferative vitreoretinopathy (PVR) surgery remains an unmet clinical need in ophthalmology. In our study, we developed an in situ formed hydrogel by crosslinking polyvinyl alcohol (PVA) and chitosan as a potential vitreous substitute. 5-fluorouracil (5-FU) Poly (lactic-co-glycolic acid) (PLGA) microspheres were developed and loaded onto the PVA/chitosan hydrogels to treat PVR. In vitro, PVA/chitosan hydrogels at four concentrations were subjected to morphological, physical, rheological analyses, and cytotoxicity was evaluated together with the characterization of 5-FU PLGA microspheres. In vivo, pharmacologically induce PVR rabbits were performed a vitrectomy. In the PVA group, 3% PVA/chitosan hydrogel was injected into the vitreous cavity. In the PVA/MS group, 3% PVA/chitosan hydrogel and 5-FU PLGA microspheres were injected. In the Control group, phosphate-buffered saline was injected. Therapeutic efficacy was evaluated with postoperative examinations and histological analyses. This study demonstrated that the 3% PVA/chitosan hydrogel showed properties similar to those of the human vitreous and could be a novel in situ crosslinked vitreous substitute for PVR. Loading 5-FU PLGA microspheres onto this hydrogel may represent an effective strategy to improve the prognosis of PVR.
Veronese C, Maiolo C, Armstrong G, Primavera L, Torrazza C, Della Mora L, Ciardella A. New surgical approach for sutureless scleral fixation. Eur J Ophthalmol. 2020;30(3):612–615.
PURPOSE: The aim of this article is to describe a novel surgical technique for sutureless scleral fixation of an intraocular lens using the newly developed FIL SSF Carlevale IOL (Soleko, Italy). METHODS: Four eyes of four patients with poor capsular support were recruited to our study, three resulting from intraocular lens subluxation and one case resulting from traumatic cataract. A novel sutureless sclera-fixated intraocular lens was implanted into the posterior chamber of each eye with sclerocorneal plugs fixating the lens to the wall of the eye. RESULTS: Mean age of patients was 52 ± 16 years, ranging from 35 to 70 years. Mean follow-up was 6.50 ± 1.29 months (range: 5-7 months). Mean preoperative best-corrected visual acuity was 0.50 ± 0.33 logMAR (range: 1-0.3 logMAR). Postoperative best-corrected visual acuity improved to 0.08 ± 0.08 logMAR (range: 0.2-0 logMAR). There was no significant change in the mean intraocular pressure and there were no postoperative complications, such as iatrogenic distortion or breakage of the intraocular lens haptic, intraocular lens decentration, endophthalmitis, or retinal detachment. DISCUSSION: To the best of our knowledge, this is the first report of outcomes using the novel sutureless sclera-fixated FIL SSF Carlevale IOL. This new surgical technique offers a simplified and effective approach for sutureless scleral intraocular lens fixation with good refractive outcomes.
Recently, we discovered that the cosmetic preservatives, benzalkonium chloride and formaldehyde, are especially toxic to human meibomian gland epithelial cells (HMGECs). Exposure to these agents, at concentrations approved for human use, leads within hours to cellular atrophy and death. We hypothesize that these effects are not unique, and that other cosmetic preservatives also exert adverse effects on HMGECs. Such compounds include parabens, phenoxyethanol and chlorphenesin, which have been reported to be toxic to corneal and conjunctival epithelial cells, the liver and kidney, as well as to irritate the eye. To test our hypothesis, we examined the influence of parabens, phenoxyethanol and chlorphenesin on the morphology, signaling, survival, proliferation and lipid expression of immortalized (I) HMGECs. These cells were cultured under proliferating or differentiating conditions with varying concentrations of methylparaben, ethylparaben, phenoxyethanol and chlorphenesin for up to 5 days. We monitored the signaling ability, appearance, number and neutral lipid content of the IHMGECs, as well as their lysosome accumulation. Our findings show that a 30-min exposure of IHMGECs to these preservatives results in a significant reduction in the activity of the Akt pathway. This effect is dose-dependent and occurs at concentrations equal to (chlorphenesin) and less than (all others) those dosages approved for human use. Further, a 24-h treatment of the IHMGECs with concentrations of methylparaben, ethylparaben, phenoxyethanol and chlorphenesin close to, or at, the approved human dose induces cellular atrophy and death. At all concentrations tested, no preservative stimulated IHMGEC proliferation. Of particular interest, it was not possible to evaluate the influence of these preservatives, at close to human approved dosages, on IHMGEC differentiation, because the cells did not survive the treatment. In summary, our results support our hypothesis and show that methylparaben, ethylparaben, phenoxyethanol and chlorphenesin are toxic to IHMGECs.
Jakobiec F, Eagle R, Selig M, Ma L, Shields C. Clinical Implications of Goblet Cells in Dacryoadenosis and Normal Human Lacrimal Glands. Am J Ophthalmol. 2020;213:267–282.
PURPOSE: The purpose of this study was to investigate an enlarged dacryoadenotic lacrimal gland and normal lacrimal glands for the presence of goblet cells (mucocytes). DESIGN: Retrospective clinicopathologic series. METHODS: An enlarged lacrimal gland (dacryoadenosis) without obvious histopathologic alterations was extensively evaluated histochemically, immunohistochemically, and ultrastructurally to detect the presence of goblet cells and to compare the findings with those in five normal lacrimal glands. RESULTS: Granular, zymogen-rich pyramidal acinar cells in normal glands predominated over a previously not reported subpopulation of nongranular, pale-staining cells in both dacryoadenotic and normal lacrimal glands. These cells histochemically stained positively with mucicarmine and Alcian blue. Immunohistochemical and electron microscopic evaluations established that there was a displacement or replacement of cytoplasmic gross cystic disease fluid protein-15 and CK 7-positive tonofilaments in the pale acinar cells by myriad mucus granules. The goblet cells constituted approximately 2% of the normal acinar cells and 5% of dacryoadenotic acinar cells. A depletion of myoepithelial cells and ectopic intra-acinar ductular cells were also observed in dacryoadenosis. CONCLUSION: Dacryoadenosis is caused by an increase in the number of acini without individual acinar cell hyperplasia. A normal cytologic feature of the lacrimal gland is the presence of acinar goblet cells that had been long overlooked; they are increased in number in dacryoadenosis. Intra-acinar ductular cells and the scattered loss of myoepithelial cells are other abnormalities in dacryoadenosis. The presence of lacrimal gland goblet cells may have physiologic implications for the precorneal tear film and its derangements as well as for the histogenesis of mucus-producing carcinomas.
Bowe T, Hunter D, Mantagos I, Kazlas M, Jastrzembski B, Gaier E, Massey G, Franz K, Schumann C, Brown C, Meyers H, Shah A. Virtual Visits in Ophthalmology: Timely Advice for Implementation During the COVID-19 Public Health Crisis. Telemed J E Health. 2020;26(9):1113–1117.
Virtual visits (VVs) are necessitated due to the public health crisis and social distancing mandates due to COVID-19. However, these have been rare in ophthalmology. Over 3.5 years of conducting >350 ophthalmological VVs, our group has gained numerous insights into best practices. This communication shares these experiences with the medical community to support patient care during this difficult time and beyond. We highlight that mastering the technological platform of choice, optimizing lighting, camera positioning, and "eye contact," being thoughtful and creative with the virtual eye examination, and ensuring good documenting and billing will make a successful and efficient VV. Moreover, we think these ideas will stimulate further VV creativity and expertise to be developed in ophthalmology and across medicine. This approach, holds promise for increasing its adoption after the crisis has passed.
Sadda S, Nittala M, Taweebanjongsin W, Verma A, Velaga S, Alagorie AR, Sears C, Silva P, Aiello L. Quantitative Assessment of the Severity of Diabetic Retinopathy. Am J Ophthalmol. 2020;218:342–352.
PURPOSE: To determine whether a quantitative approach to assessment of the severity of diabetic retinopathy (DR) lesions on ultrawide field (UWF) images can provide new parameters to predict progression to proliferative diabetic retinopathy (PDR). METHODS: One hundred forty six eyes from 73 participants with DR and 4 years of follow-up data were included in this post hoc analysis, which was based on a cohort of 100 diabetic patients enrolled in a previously published prospective, comparative study of UWF imaging at the Joslin Diabetes Center. Diabetic Retinopathy Severity Score level was determined at baseline and 4-year follow-up visits using mydriatic 7-standard field Early Treatment Diabetic Retinopathy Study (ETDRS) photographs. All individual DR lesions (hemorrhage [H], microaneurysm [ma], cotton wool spot [CWS], intraretinal microvascular abnormality [IRMA]) were manually segmented on stereographic projected UWF. For each lesion type, the frequency/number, surface area, and distances from the optic nerve head (ONH) were computed. These quantitative parameters were compared between eyes that progressed to PDR in 4 years and eyes that did not progress. Univariable and multivariable logistic regression analyses were performed to identify parameters that were associated with an increased risk for progression to PDR. RESULTS: A total of 146 eyes of 73 subjects were included in the final analysis. The mean age of the study cohort was 53.1 years, and 42 (56.8%) subjects were female. The number and surface area of H/ma's and CWSs were significantly (P ≤ .05) higher in eyes that progressed to PDR compared with eyes that did not progress by 4 years. Similarly, H/ma's and CWSs were located further away from the ONH (ie, more peripheral) in eyes that progressed (P < .05). DR lesion parameters that conferred a statistically significant increased risk for proliferative diabetic retinopathy in the multivariate model included hemorrhage area (odds ratio [OR], 2.63; 95% confidence interval [CI], 1.25-5.53), and greater distance of hemorrhages from the ONH (OR, 1.24; 95% CI, 0.97-1.59). CONCLUSIONS: Quantitative analysis of DR lesions on UWF images identifies new risk parameters for progression to PDR including the surface area of hemorrhages and the distance of hemorrhages from the ONH. Although these risk factors will need to be confirmed in larger, prospective studies, they highlight the potential for quantitative lesion analysis to inform the design of a more precise and complete staging system for diabetic retinopathy severity in the future. NOTE: Publication of this article is sponsored by the American Ophthalmological Society.
Chen D, Liu Y, Shu G, Chen C, Sullivan D, Kam W, Hann S, Fowler M, Warman M. Ocular Manifestations of Chordin-like 1 Knockout Mice. Cornea. 2020;39(9):1145–1150.
PURPOSE: In humans, loss-of-function mutations in the gene encoding Chordin-like 1 (CHRDL1) cause X-linked megalocornea (MGC1), characterized by bilateral corneal enlargement, decreased corneal thickness, and increased anterior chamber depth (ACD). We sought to determine whether Chrdl1 knockout (KO) mice would recapitulate the ocular findings found in patients with MGC1. METHODS: We generated mice with a Chrdl1 KO allele and confirmed that male Chrdl1 hemizygous KO mice do not express Chrdl1 mRNA. We examined the eyes of male mice that were hemizygous for either the wild-type (WT) or KO allele and measured corneal diameter, corneal area, corneal thickness, endothelial cell density, ACD, tear volume, and intraocular pressure. We also harvested retinas and counted retinal ganglion cell numbers. Eye segregation pattern in the dorsal lateral geniculate nucleus were also compared between male Chrdl1 KO and WT mice. RESULTS: Male Chrdl1 KO mice do not have larger cornea diameters than WT mice. KO mice have significantly thicker central corneas (116.5 ± 3.9 vs. 100.9 ± 4.2 μm, P = 0.013) and smaller ACD (325.7 ± 5.7 vs. 405.6 ± 6.3 μm, P < 0.001) than WT mice, which is the converse of what occurs in patients who lack CHRDL1. Retinal-thalamic projections and other ocular measurements did not significantly differ between KO and WT mice. CONCLUSIONS: Male Chrdl1 KO mice do not have the same anterior chamber abnormalities seen in humans with CHRDL1 mutations. Therefore, Chrdl1 KO mice do not recapitulate the human MGC1 phenotype. Nevertheless, Chrdl1 plays a role during mouse ocular development because corneas in KO mice differ from those in WT mice.
Chang M, Binenbaum G, Heidary G, Morrison D, Galvin J, Trivedi R, Pineles S. Imaging Methods for Differentiating Pediatric Papilledema from Pseudopapilledema: A Report by the American Academy of Ophthalmology. Ophthalmology. 2020;127(10):1416–1423.
PURPOSE: To review the published literature on the accuracy of ophthalmic imaging methods to differentiate between papilledema and pseudopapilledema in children. METHODS: Literature searches were conducted in January 2020 in the PubMed database for English-language studies with no date restrictions and in the Cochrane Library database without any restrictions. The combined searches yielded 354 abstracts, of which 17 were reviewed in full text. Six of these were considered appropriate for inclusion in this assessment and were assigned a level of evidence rating by the panel methodologist. All 6 included studies were rated as level III evidence. RESULTS: Fluorescein angiography, a combination of 2 OCT protocols, and multicolor confocal scanning laser ophthalmoscopy (Spectralis SD-OCT; Heidelberg Engineering, Heidelberg, Germany) demonstrated the highest positive percent agreement (92%-100%; 95% confidence interval [CI], 69%-100%) and negative percent agreement (92%-100%; 95% CI, 70%-100%) with a clinical diagnosis of papilledema in children. However, results must be interpreted with caution owing to methodologic limitations, including a small sample size leading to wide CIs and an overall lack of data (there was only 1 study each for the above methods and protocols). Ultrasonographic measures showed either a high positive percent agreement (up to 95%) with low negative percent agreement (as low as 58%) or vice versa. Autofluorescence and fundus photography showed a lower positive (40%-60%) and negative (57%) percent agreement. CONCLUSIONS: Although several imaging methods demonstrated high positive and negative percent agreement with clinical diagnosis, no ophthalmic imaging method conclusively differentiated papilledema from pseudopapilledema in children because of the lack of high-quality evidence. Clinicians must continue to conduct thorough history-taking and examination and make judicious use of ancillary testing to determine which children warrant further workup for papilledema.
Han X, Yang S, Kam W, Sullivan D, Liu Y. The Carbonic Anhydrase Inhibitor Dorzolamide Stimulates the Differentiation of Human Meibomian Gland Epithelial Cells. Curr Eye Res. 2020;45(12):1604–1610.
PURPOSE: Clinical studies have indicated that the long-term use of topical antiglaucoma drugs, such as carbonic anhydrase inhibitors (CAIs), may lead to meibomian gland dysfunction (MGD). We hypothesize that these adverse effects involve a direct influence on human MG epithelial cells (HMGECs). The purpose our present investigation was to test our hypothesis and determine whether exposure to dorzolamide, a CAI, impacts the proliferation, intracellular signaling and differentiation of HMGECs. MATERIALS AND METHODS: We cultured immortalized (i) HMGECs with vehicle or various concentrations of dorzolamide for 6 days. Cells were enumerated with a hemocytometer, and examined for their morphology, Akt signaling activity, accumulation of neutral lipids, phospholipids and lysosomes, and the expression of protein biomarkers for lipogenesis regulation, lysosomes and autophagosomes. RESULTS: Our results show that a high, 500 µg/ml concentration of dorzolamide causes a significant decrease in Akt signaling and the proliferation of iHMGECs. However, the high dose of dorzolamide also promotes the differentiation of iHMGECs. This response features increases in the number of lysosomes, the accumulation of phospholipids, and the expression of the light chain 3A biomarker for autophagosomes. In contrast, the therapeutic amount (50 µg/ml) of dorzolamide has no impact on the proliferative or differentiative abilities of iHMGECs. CONCLUSIONS: Our results support our hypothesis and demonstrate that the CAI dorzolamide does exert a direct influence on the proliferation and differentiation of iHMGECs. However, this effect is elicited only by a high, and not a therapeutic, amount of dorzolamide. AKT: phosphoinositide 3-kinase-protein kinase B; BPE: bovine pituitary extract; CAD: cationic amphiphilic drug; DED: dry eye disease; DMEM/F12: 1:1 mixture of Dulbecco's modified Eagle's medium and Ham's F-12; EGF: epidermal growth factor; FBS: fetal bovine serum; iHMGECs: immortalized human meibomian gland epithelial cells; KSFM: keratinocyte serum-free medium; LAMP-1: lysosomal-associated membrane protein 1; LC3A: light chain 3A; MGD: meibomian gland dysfunction; SREBP-1: sterol regulatory element-binding protein 1.
Chilambi GS, Nordstrom H, Evans D, Ferrolino J, Hayden R, Marón G, Vo A, Gilmore M, Wolf J, Rosch J, Van Tyne D. Evolution of vancomycin-resistant during colonization and infection in immunocompromised pediatric patients. Proc Natl Acad Sci U S A. 2020;117(21):11703–11714.
Patients with hematological malignancies or undergoing hematopoietic stem cell transplantation are vulnerable to colonization and infection with multidrug-resistant organisms, including vancomycin-resistant (VREfm). Over a 10-y period, we collected and sequenced the genomes of 110 VREfm isolates from gastrointestinal and blood cultures of 24 pediatric patients undergoing chemotherapy or hematopoietic stem cell transplantation for hematological malignancy at St. Jude Children's Research Hospital. We used patient-specific reference genomes to identify variants that arose over time in subsequent gastrointestinal and blood isolates from each patient and analyzed these variants for insight into how VREfm adapted during colonization and bloodstream infection within each patient. Variants were enriched in genes involved in carbohydrate metabolism, and phenotypic analysis identified associated differences in carbohydrate utilization among isolates. In particular, a Y585C mutation in the sorbitol operon transcriptional regulator was associated with increased bacterial growth in the presence of sorbitol. We also found differences in biofilm-formation capability between isolates and observed that increased biofilm formation correlated with mutations in the putative capsular polysaccharide () biosynthetic locus, with different mutations arising independently in distinct genetic backgrounds. Isolates with mutations showed improved survival following exposure to lysozyme, suggesting a possible reason for the selection of capsule-lacking bacteria. Finally, we observed mutations conferring increased tolerance of linezolid and daptomycin in patients who were treated with these antibiotics. Overall, this study documents known and previously undescribed ways that VREfm evolve during intestinal colonization and subsequent bloodstream infection in immunocompromised pediatric patients.