Publications

2018

He M, Lippestad M, Li D, Hodges R, Utheim T, Dartt DA. Activation of the EGF Receptor by Histamine Receptor Subtypes Stimulates Mucin Secretion in Conjunctival Goblet Cells. Invest Ophthalmol Vis Sci. 2018;59(8):3543–3553.
Purpose: The purpose of this study was to determine if histamine receptors interact with the epidermal growth factor receptor (EGFR) in cultured rat conjunctival goblet cells. Methods: Goblet cells from rat conjunctiva were grown in organ culture. First-passage goblet cells were used in all experiments. Phosphorylated (active) and total EGFR, AKT, and extracellular signal-regulated kinase (ERK)1/2 were measured by Western blot analysis. Cells were preincubated with the EGFR antagonist AG1478 for 30 minutes or small interfering RNA specific to the EGFR for 3 days prior to stimulation with histamine or agonists specific for histamine receptor subtypes for 2 hours. Goblet cell secretion was measured using an enzyme-linked lectin assay. Goblet cells were incubated for 1 hour with the calcium indicator molecule fura-2/AM, and intracellular [Ca2+] ([Ca2+]i) was determined. Data were collected in real time and presented as the actual [Ca2+]i with time and as the change in peak [Ca2+]i. Results: Histamine increased the phosphorylation of the EGFR. Mucin secretion and increase in [Ca2+]i stimulated by histamine, and agonists specific for each histamine receptor subtype were blocked by inhibition of the EGFR. Increase in [Ca2+]i stimulated by histamine and specific agonists for each histamine receptor was also inhibited by TAPI-1, a matrix metalloproteinase (MMP) inhibitor. The histamine-stimulated increase in activation of AKT, but not ERK1/2, was blocked by AG1478. Conclusions: In conjunctival goblet cells, histamine, using all four receptor subtypes, transactivates the EGFR via an MMP. This in turn phosphorylates AKT to increase [Ca2+]i and stimulate mucin secretion.
Huang CC, Yang W, Guo C, Jiang H, Li F, Xiao M, Davidson S, Yu G, Duan B, Huang T, Huang A, Liu Q. Anatomical and functional dichotomy of ocular itch and pain. Nat Med. 2018;
Itch and pain are refractory symptoms of many ocular conditions. Ocular itch is generated mainly in the conjunctiva and is absent from the cornea. In contrast, most ocular pain arises from the cornea. However, the underlying mechanisms remain unknown. Using genetic axonal tracing approaches, we discover distinct sensory innervation patterns between the conjunctiva and cornea. Further genetic and functional analyses in rodent models show that a subset of conjunctival-selective sensory fibers marked by MrgprA3 expression, rather than corneal sensory fibers, mediates ocular itch. Importantly, the actions of both histamine and nonhistamine pruritogens converge onto this unique subset of conjunctiva sensory fibers and enable them to play a key role in mediating itch associated with allergic conjunctivitis. This is distinct from skin itch, in which discrete populations of sensory neurons cooperate to carry itch. Finally, we provide proof of concept that selective silencing of conjunctiva itch-sensing fibers by pruritogen-mediated entry of sodium channel blocker QX-314 is a feasible therapeutic strategy to treat ocular itch in mice. Itch-sensing fibers also innervate the human conjunctiva and allow pharmacological silencing using QX-314. Our results cast new light on the neural mechanisms of ocular itch and open a new avenue for developing therapeutic strategies.
Ikeda Y, Sun Z, Ru X, Vandenberghe L, Humphreys B. Efficient Gene Transfer to Kidney Mesenchymal Cells Using a Synthetic Adeno-Associated Viral Vector. J Am Soc Nephrol. 2018;29(9):2287–2297.
BACKGROUND: After injury, mesenchymal progenitors in the kidney interstitium differentiate into myofibroblasts, cells that have a critical role in kidney fibrogenesis. The ability to deliver genetic material to myofibroblast progenitors could allow new therapeutic approaches to treat kidney fibrosis. Preclinical and clinical studies show that adeno-associated viruses (AAVs) efficiently and safely transduce various tissue targets ; however, protocols for transduction of kidney mesenchymal cells have not been established. METHODS: We evaluated the transduction profiles of various pseudotyped AAV vectors expressing either GFP or Cre recombinase reporters in mouse kidney and human kidney organoids. RESULTS: Of the six AAVs tested, a synthetic AAV called Anc80 showed specific and high-efficiency transduction of kidney stroma and mesangial cells. We characterized the cell specificity, dose dependence, and expression kinetics and showed the efficacy of this approach by knocking out Gli2 from kidney mesenchymal cells by injection of Anc80-Cre virus into either homozygous or heterozygous Gli2-floxed mice. After unilateral ureteral obstruction, the homozygous Gli2-floxed mice had less fibrosis than the Gli2 heterozygotes had. We observed the same antifibrotic effect in -catenin-floxed mice injected with Anc80-Cre virus before obstructive injury, strongly supporting a central role for canonical Wnt signaling in kidney myofibroblast activation. Finally, we showed that the Anc80 synthetic virus can transduce the mesenchymal lineage in human kidney organoids. CONCLUSIONS: These studies establish a novel method for inducible knockout of floxed genes in mouse mesangium, pericytes, and perivascular fibroblasts and are the foundation for future gene therapy approaches to treat kidney fibrosis.
Jorge A, Melles R, Zhang Y, Lu N, Rai S, Young L, Costenbader K, Ramsey-Goldman R, Lim S, Esdaile J, Clarke A, Urowitz, Askanase A, Aranow C, Petri M, Choi H. Hydroxychloroquine prescription trends and predictors for excess dosing per recent ophthalmology guidelines. Arthritis Res Ther. 2018;20(1):133.
BACKGROUND: Hydroxychloroquine (HCQ) retinopathy may be more common than previously recognized; recent ophthalmology guidelines have revised recommendations from ideal body weight (IBW)-based dosing to actual body weight (ABW)-based dosing. However, contemporary HCQ prescribing trends in the UK remain unknown. METHODS: We examined a UK general population database to investigate HCQ dosing between 2007 and 2016. We studied trends of excess HCQ dosing per ophthalmology guidelines (defined by exceeding 6.5 mg/kg of IBW and 5.0 mg/kg of ABW) and determined their independent predictors using multivariable logistic regression analyses. RESULTS: Among 20,933 new HCQ users (78% female), the proportions of initial HCQ excess dosing declined from 40% to 36% using IBW and 38% to 30% using ABW, between 2007 and 2016. Among these, 47% of women were excess-dosed (multivariable OR 12.52; 95% CI 10.99-14.26) using IBW and 38% (multivariable OR 1.98; 95% CI,1.81-2.15) using ABW. Applying IBW, 37% of normal and 44% of obese patients were excess-dosed; however, applying ABW, 53% of normal and 10% of obese patients were excess-dosed (multivariable ORs = 1.61 and 0.1 (reference = normal); both p < 0.01). Long-term HCQ users showed similar excess dosing. CONCLUSION: A substantial proportion of HCQ users in the UK, particularly women, may have excess HCQ dosing per the previous or recent weight-based guidelines despite a modest decline in recent years. Over half of normal-BMI individuals were excess-dosed per the latest guidelines. This implies the potential need to reduce dosing for many patients but also calls for further research to establish unifying evidence-based safe and effective dosing strategies.
Laíns I, Kelly R, Miller J, Vavvas D, Kim I, Lasky-Su J, Miller J, Husain D. Reply. Ophthalmology. 2018;125(7):e46-e47.
Lieberman M, Van Tyne D, Dzink-Fox J, Ma E, Gilmore M, Fox J. Long-Term Colonization Dynamics of Enterococcus faecalis in Implanted Devices in Research Macaques. Appl Environ Microbiol. 2018;84(18).
is a common opportunistic pathogen that colonizes cephalic recording chambers (CRCs) of macaques used in cognitive neuroscience research. We previously characterized 15 strains isolated from macaques at the Massachusetts Institute of Technology (MIT) in 2011. The goal of this study was to examine how a 2014 protocol change prohibiting the use of antimicrobials within CRCs affected colonizing strains. We collected 20 isolates from 10 macaques between 2013 and 2017 for comparison to 4 isolates previously characterized in 2011 with respect to the sequence type (ST) distribution, antimicrobial resistance, biofilm formation, and changes in genes that might confer a survival advantage. ST4 and ST55 were predominant among the isolates characterized in 2011, whereas the less antimicrobial-resistant lineage ST48 emerged to dominance after 2013. Two macaques remained colonized by ST4 and ST55 strains for 5 and 4 years, respectively. While the antimicrobial resistance and virulence factors identified in these ST4 and ST55 strains remained relatively stable, we detected an increase in biofilm formation ability over time in both isolates. We also found that ST48 strains were typically robust biofilm formers, which could explain why this ST increased in prevalence. Finally, we identified mutations in the DNA mismatch repair genes and in separate ST55 and ST4 strains and confirmed that strains bearing these mutations displayed a hypermutator phenotype. The presence of a hypermutator phenotype may complicate future antimicrobial treatment for clinically relevant infections in macaques. is a common cause of health care-associated infections in humans, largely due to its ability to persist in the hospital environment, colonize patients, acquire antimicrobial resistance, and form biofilms. Understanding how enterococci evolve in health care settings provides insight into factors affecting enterococcal survival and persistence. Macaques used in neuroscience research have long-term cranial implants that, despite best practices, often become colonized by This provides a unique opportunity to noninvasively examine the evolution of enterococci on a long-term indwelling device. We collected strains from cephalic implants over a 7-year period and characterized the sequence type, antimicrobial resistance, virulence factors, biofilm production, and hypermutator phenotypes. Improved antimicrobial stewardship allowed a less-antimicrobial-resistant strain to predominate at the implant interface, potentially improving antimicrobial treatment outcomes if future clinical infections occur. Biofilm formation appears to play an important role in the persistence of the strains associated with these implants.
Moos W, Faller D, Glavas I, Harpp D, Irwin M, Kanara I, Pinkert C, Powers W, Steliou K, Vavvas D, Kodukula K. A New Approach to Treating Neurodegenerative Otologic Disorders. Biores Open Access. 2018;7(1):107–115.
Hearing loss, the most common neurological disorder and the fourth leading cause of years lived with disability, can have profound effects on quality of life. The impact of this "invisible disability," with significant consequences, economic and personal, is most substantial in low- and middle-income countries, where >80% of affected people live. Given the importance of hearing for communication, enjoyment, and safety, with up to 500 million affected globally at a cost of nearly $800 billion/year, research on new approaches toward prevention and treatment is attracting increased attention. The consequences of noise pollution are largely preventable, but irreversible hearing loss can result from aging, disease, or drug side effects. Once damage occurs, treatment relies on hearing aids and cochlear implants. Preventing, delaying, or reducing some degree of hearing loss may be possible by avoiding excessive noise and addressing major contributory factors such as cardiovascular risk. However, given the magnitude of the problem, these interventions alone are unlikely to be sufficient. Recent advances in understanding principal mechanisms that govern hearing function, together with new drug discovery paradigms designed to identify efficacious therapies, bode well for pharmaceutical intervention. This review surveys various causes of loss of auditory function and discusses potential neurological underpinnings, including mitochondrial dysfunction. Mitochondria mitigate cell protection, survival, and function and may succumb to cumulative degradation of energy production and performance; the end result is cell death. Energy-demanding neurons and vestibulocochlear hair cells are vulnerable to mitochondrial dysfunction, and hearing impairment and deafness are characteristic of neurodegenerative mitochondrial disease phenotypes. Beyond acting as cellular powerhouses, mitochondria regulate immune responses to infections, and studies of this phenomenon have aided in identifying nuclear factor kappa B and nuclear factor erythroid 2-related factor 2/antioxidant response element signaling as targets for discovery of otologic drugs, respectively, suppressing or upregulating these pathways. Treatment with free radical scavenging antioxidants is one therapeutic approach, with lipoic acid and corresponding carnitine esters exhibiting improved biodistribution and other features showing promise. These compounds are also histone deacetylase (HDAC) inhibitors, adding epigenetic modulation to the mechanistic milieu through which they act. These data suggest that new drugs targeting mitochondrial dysfunction and modulating epigenetic pathways via HDAC inhibition or other mechanisms hold great promise.
Nanji K, Fain B, Morley M, Bayes J. In Response. Anesth Analg. 2018;127(4):e67-e68.
Nanji K, Fain B, Morley M, Bayes J. In Response. Anesth Analg. 2018;127(4):e69-e70.