Publications

2015

Essen, Roelen, Williams, Jager. Matching for Human Leukocyte Antigens (HLA) in corneal transplantation - To do or not to do.. Prog Retin Eye Res. 2015;46:84–110.

As many patients with severe corneal disease are not even considered as candidates for a human graft due to their high risk of rejection, it is essential to find ways to reduce the chance of rejection. One of the options is proper matching of the cornea donor and recipient for the Human Leukocyte Antigens (HLA), a subject of much debate. Currently, patients receiving their first corneal allograft are hardly ever matched for HLA and even patients undergoing a regraft usually do not receive an HLA-matched graft. While anterior and posterior lamellar grafts are not immune to rejection, they are usually performed in low risk, non-vascularized cases. These are the cases in which the immune privilege due to the avascular status and active immune inhibition is still intact. Once broken due to infection, sensitization or trauma, rejection will occur. There is enough data to show that when proper DNA-based typing techniques are being used, even low risk perforating corneal transplantations benefit from matching for HLA Class I, and high risk cases from HLA Class I and probably Class II matching. Combining HLA class I and class II matching, or using the HLAMatchmaker could further improve the effect of HLA matching. However, new techniques could be applied to reduce the chance of rejection. Options are the local or systemic use of biologics, or gene therapy, aiming at preventing or suppressing immune responses. The goal of all these approaches should be to prevent a first rejection, as secondary grafts are usually at higher risk of complications including rejections than first grafts.

Grob S, Jakobiec F, Rashid A, MacIntosh P, Kelly H, Fay A. Pediatric Optic Nerve Meningioma: Diagnostic and Therapeutic Challenges.. Ophthal Plast Reconstr Surg. 2015;

A 13-year-old female presented with left unilateral proptosis, blurry vision, and diplopia. Clinical examination showed left sided visual acuity of 20/50, limited extraocular movement, 5-mm proptosis, and optic disc edema. CT and MRI displayed a large, intraconal, well-demarcated soft tissue mass with inferotemporal displacement of the optic nerve. The imaging appearance was unusual and diagnosis remained uncertain. Histopathologic analysis of the biopsy specimen confirmed the diagnosis of atypical syncytial meningioma. The tumor cells were positive for both androgen and progesterone receptors and the Ki67 stain was positive (proliferation index of 8%). The patient was treated with proton beam radiation therapy (total dose 50.4 GyE) that suppressed tumor growth and has preserved visual acuity to date (20/40). Differential diagnosis and approaches to therapy are explored.

Karamichos, Zieske, Sejersen, Sarker-Nag, Asara J, Hjortdal. Tear metabolite changes in keratoconus.. Exp Eye Res. 2015;132:1–8.

While efforts have been made over the years, the exact cause of keratoconus (KC) remains unknown. The aim of this study was to identify alterations in endogenous metabolites in the tears of KC patients compared with age-matched healthy subjects. Three groups were tested: 1) Age-matched controls with no eye disease (N = 15), 2) KC - patients wearing Rigid Gas permeable lenses (N = 16), and 3) KC - No Correction (N = 14). All samples were processed for metabolomics analysis using LC-MS/MS. We identified a total of 296 different metabolites of which >40 were significantly regulated between groups. Glycolysis and gluconeogenesis had significant changes, such as 3-phosphoglycerate and 1,3 diphosphateglycerate. As a result the citric acid cycle (TCA) was also affected with notable changes in Isocitrate, aconitate, malate, and acetylphosphate, up regulated in Group 2 and/or 3. Urea cycle was also affected, especially in Group 3 where ornithine and aspartate were up-regulated by at least 3 fold. The oxidation state was also severely affected. Groups 2 and 3 were under severe oxidative stress causing multiple metabolites to be regulated when compared to Group 1. Group 2 and 3, both showed significant down regulation in GSH-to-GSSG ratio when compared to Group 1. Another indicator of oxidative stress, the ratio of lactate - pyruvate was also affected with Groups 2 and 3 showing at least a 2-fold up regulation. Overall, our data indicate that levels of metabolites related to urea cycle, TCA cycle and oxidative stress are highly altered in KC patients.

Mukherjee S, Zhou X, Rajaiya J, Chodosh J. Ultrastructure of adenovirus keratitis.. Invest Ophthalmol Vis Sci. 2015;56(1):472–7.

PURPOSE: We determined the ultrastructure of mouse adenovirus keratitis, a model for human adenovirus keratitis. METHODS: Adenovirus keratitis was induced in C57Bl/6j mice by intrastromal injection of human adenovirus species D type 37 (HAdV-D37) with a heat-pulled, glass, micropipette needle under compressed air. At select time points after infection, mice were euthanized and their corneas removed, fixed, and sectioned at 70-nm thickness for electron microscopy. RESULTS: Injection of HAdV-D37 into the mouse corneal stroma placed virus predominantly in the pericellular corneal stromal matrix. Virus was seen bound to and entering stromal cells at 1 and 2 hours after infection, respectively. Cell membrane transit by virus was seen to involve two distinct structures resembling caveolae and macropinosomes. However, later during infection intracellular virus was not seen within membrane-bound organelles. By 8 hours after infection, intracellular virus had accumulated into densely packed, perinuclear arrays. Virus disassembly was not obvious at any time point after infection. Infiltrating neutrophils seen by one day after infection had engulfed degraded stromal cells by 4 days after infection. CONCLUSIONS: By transmission electron microscopy, injected HAdV-D37 readily enters stromal cells in the C57Bl/6j mouse cornea and induces stromal inflammation, as was shown previously by light microscopy. However, electron microscopy also revealed dense, static arrays of intracytoplasmic virus, suggesting a block in viral capsid disassembly and viral DNA nuclear entry. These findings may explain why human adenoviruses do not replicate in the mouse corneal stroma.

Membrane-associated mucins (MAMs) expressed on the ocular surface epithelium form a dense glycocalyx that is hypothesized to protect the cornea and conjunctiva from external insult. In this study, the hypothesis that the MAMs MUC1 and MUC16, expressed on the apical surface of the corneal epithelium, suppress Toll-like receptor (TLR)-mediated innate immune responses was tested. Using an in vitro model of corneal epithelial cells that are cultured to express MAMs, we show that reduced expression of either MUC1 or MUC16 correlates with increased message and secreted protein levels of the proinflammatory cytokines interleukin (IL)-6, IL-8, and tumor necrosis factor-α (TNF-α) following exposure of cells to the TLR2 and TLR5 agonists, heat-killed Listeria monocytogenes and flagellin, respectively. As mice express Muc1 (but not Muc16) in the corneal epithelium, a Muc1(-/-) mouse model was used to extend in vitro findings. Indeed, IL-6 and TNF-α message levels were increased in the corneal epithelium of Muc1(-/-) mice, in comparison with wild-type mice, following exposure of enucleated eyes to the TLR2 and TLR5 agonists. Our results suggest that the MAMs MUC1 and MUC16 contribute to the maintenance of immune homeostasis at the ocular surface by limiting TLR-mediated innate immune responses.

Kim TK, Hemberg M, Gray J. Enhancer RNAs: a class of long noncoding RNAs synthesized at enhancers.. Cold Spring Harb Perspect Biol. 2015;7(1):a018622.

Recent studies have revealed that active enhancers are transcribed, producing a class of noncoding RNAs called enhancer RNAs (eRNAs). eRNAs are distinct from long noncoding RNAs (lncRNAs), but these two species of noncoding RNAs may share a similar role in the activation of mRNA transcription. Emerging studies, showing that eRNAs function in controlling mRNA transcription, challenge the idea that enhancers are merely sites of transcription factor assembly. Instead, communication between promoters and enhancers can be bidirectional with promoters required to activate enhancer transcription. Reciprocally, eRNAs may then facilitate enhancer-promoter interaction or activate promoter-driven transcription.

Bron, Argüeso, Irkec, Bright. Clinical staining of the ocular surface: mechanisms and interpretations.. Prog Retin Eye Res. 2015;44:36–61.

In this article we review the mechanism of ocular surface staining. Water-soluble dyes are excluded from the normal epithelium by tight junctions, the plasma membranes and the surface glycocalyx. Shed cells can take up dye. A proportion of normal corneas show sparse, scattered time-dependent, punctate fluorescein uptake, which, we hypothesise, is due to a graded loss of the glycocalyx barrier, permitting transcellular entry into pre-shed cells. In pathological staining, there is little evidence of 'micropooling' at sites of shedding and the term 'punctate erosion' may be a misnomer. It is more likely that the initial event involves transcellular dye entry and, in addition, diffusion across defective tight junctions. Different dye-staining characteristics probably reflect differences in molecular size and other physical properties of each dye, coupled with differences in visibility under the conditions of illumination used. This is most relevant to the rapid epithelial spread of fluorescein from sites of punctate staining, compared to the apparent confinement of dyes to staining cells with dyes such as lissamine green and rose bengal. We assume that fluorescein, with its lower molecular weight, spreads initially by a paracellular route and then by transcellular diffusion. Solution-Induced Corneal Staining (SICS), related to the use of certain contact lens care solutions, may have a different basis, involving the non-pathological uptake of cationic preservatives, such as biguanides, into epithelial membranes and secondary binding of the fluorescein anion. It is transient and may not imply corneal toxicity. Understanding the mechanism of staining is relevant to the standardisation of grading, to monitoring disease and to the conduct of clinical trials.

Jakobiec F, Roh M, Stagner A, Yoon M. Caruncular dacryops.. Cornea. 2015;34(1):107–9.

PURPOSE: To report a case of caruncular dacryops in a 58-year-old man that was excised in its entirety and to offer an immunohistopathologic analysis. METHODS: Sections stained with hematoxylin and eosin, periodic acid-Schiff, and Grocott methenamine silver (the latter 2 for identification of mucus) were evaluated, and immunohistochemical investigations were performed using cytokeratin (CK) 7, CK14, CK17, and smooth muscle actin. RESULTS: Histopathologic examination revealed a cystic dilation of the lacrimal gland ducts containing secretory globules. The ducts were composed of double-layered cuboidal epithelium with rare scattered goblet cells and interspersed prominent lobules of lacrimal gland tissue, diagnostic of dacryops. Immunohistochemistry of cystic ducts demonstrated a CK profile identical to that of the conjunctiva including the absence of a myoepithelium. CONCLUSIONS: This is the first case of an intact caruncular lacrimal ductal cyst (dacryops). A previous report documented a spontaneously collapsed cyst with extrusion of secretory globoid bodies into extracellular space that elicited a foreign body giant cell response.

Crnej A, Omoto M, Dohlman T, Dohlman C, Dana R. Corneal inflammation after miniature keratoprosthesis implantation.. Invest Ophthalmol Vis Sci. 2015;56(1):185–9.

PURPOSE: To compare corneal inflammation after syngeneic and allogeneic penetrating keratoplasty (PK) with miniature Keratoprosthesis (m-KPro) implantation in mice. METHODS: BALB/C (syngeneic) or C57BL/6 (allogeneic) corneas were transplanted onto BALB/C host beds as part of PK or m-KPro implantation. Corneal inflammation was assessed by determining the frequencies of CD45(+) leukocytes, CD4(+) T cells, CD11b(+) cells, and Gr-1(+) granulocytes/monocytes by flow cytometry at 2, 4, and 8 weeks post transplantation. In addition, expression levels of the proinflammatory cytokines TNF-α and IL-1β were analyzed using real-time qPCR at 8 weeks post transplantation. RESULTS: Cell frequencies in the syngeneic (syn) and allogeneic (allo) m-KPro groups were higher compared with the syngeneic and allogeneic PK groups, respectively, at all time points. However, after week 4, frequencies of all analyzed immune cells were higher in the alloPK group as compared with synKPro group. At 8 weeks, the expression of TNF-α was higher in synKPro, alloPK, and alloKPro groups compared with the naïve and synPK groups. The expression of IL-1β was significantly higher in both KPro groups as compared with PK groups. CONCLUSIONS: Although the m-KPro device augments the inflammatory response in the cornea after its implantation, allogenicity (of the carrier tissue) is also a significant contributor to corneal inflammation. These data suggest that using syngeneic or decellularized corneal tissue as a Boston-KPro carrier could reduce the postoperative inflammation response.

Kheirkhah A, Dohlman T, Amparo F, Arnoldner M, Jamali A, Hamrah P, Dana R. Effects of corneal nerve density on the response to treatment in dry eye disease.. Ophthalmology. 2015;122(4):662–8.

PURPOSE: To evaluate whether levels of corneal subbasal nerve fiber length (SNFL) in dry eye disease (DED) could prognosticate the level of improvement in signs and symptoms after treatment. DESIGN: Phase IV, double-masked, randomized clinical trial. PARTICIPANTS: Sixty patients with meibomian gland dysfunction-associated DED and 27 age-matched controls. METHODS: Patients with DED were randomized to receive topical artificial tears, loteprednol etabonate 0.5%, or loteprednol etabonate 0.5%/tobramycin 0.3% twice daily for 4 weeks. At baseline, in vivo confocal microscopy of central cornea was performed in both eyes. Patients with DED were divided into 2 subgroups: those with low baseline SNFL and those with near-normal baseline SNFL for this purpose (the cutoff point: the mean SNFL in controls minus 2 standard deviations). Clinical signs and symptoms at baseline and after 4 weeks of treatment were compared between the subgroups with low and near-normal SNFL for all therapeutic groups. MAIN OUTCOME MEASURES: Symptom questionnaires, corneal fluorescein staining (CFS), conjunctival staining with lissamine green, tear break-up time, Schirmer's test, and SNFL. RESULTS: In patients with DED, baseline SNFL (17.06±5.78 mm/mm(2)) was significantly lower than in controls (23.68±3.42 mm/mm(2), P = 0.001). In the artificial tear and loteprednol groups, although no significant improvement in any sign or symptom was noted in patients with low baseline SNFL (<16.84 mm/mm(2)), subjects with near-normal baseline SNFL (≥16.84 mm/mm(2)) showed significant improvement in both symptoms and CFS score (all P < 0.05). In the loteprednol/tobramycin group, no significant change was evident for any sign or symptom in either subgroup of low or near-normal baseline SNFL. CONCLUSIONS: Significant improvements in CFS and patient symptomatology after DED treatment were evident only in the subgroup with near-normal corneal SNFL. Consideration of SNFL may assist in explaining the variability of patients' response to DED therapy.