Publications

2014

IMPORTANCE: Research has indicated some shared pathogenic mechanisms between age-related macular degeneration (AMD) and cardiovascular disease (CVD). However, results from prior epidemiologic studies have been inconsistent as to whether AMD is predictive of future CVD risk. OBJECTIVE: To systematically review population-based cohort studies of the association between AMD and risk of total CVD and CVD subtypes, coronary heart disease (CHD) and stroke. DATA SOURCES: A systematic search of the PubMed and EMBASE databases and reference lists of key retrieved articles up to December 20, 2012 without language restriction. DATA EXTRACTION: Two reviewers independently extracted data on baseline AMD status, risk estimates of CVD and methods used to assess AMD and CVD. We pooled relative risks using random or fixed effects models as appropriate. RESULTS: Thirteen cohort studies (8 prospective and 5 retrospective studies) with a total of 1,593,390 participants with 155,500 CVD events (92,039 stroke and 62,737 CHD) were included in this meta-analysis. Among all studies, early AMD was associated with a 15% (95% CI, 1.08-1.22) increased risk of total CVD. The relative risk was similar but not significant for late AMD (RR, 1.17; 95% CI, 0.98-1.40). In analyses restricted to the subset of prospective studies, the risk associated with early AMD did not appreciably change; however, there was a marked 66% (95% CI, 1.31-2.10) increased risk of CVD among those with late AMD. CONCLUSION: Whereas the results from all cohort studies suggest that both early and late AMD are predictive of a small increase in risk of future CVD, subgroup analyses limited to prospective studies demonstrate a markedly increased risk of CVD among people with late AMD. Retrospective studies using healthcare databases may have inherent methodological limitations that obscure such association. Additional prospective studies are needed to further elucidate the associations between AMD and specific CVD outcomes.
Yamada T, Yang Y, Hemberg M, Yoshida T, Cho HY, Murphy P, Fioravante D, Regehr W, Gygi S, Georgopoulos K, Bonni A. Promoter decommissioning by the NuRD chromatin remodeling complex triggers synaptic connectivity in the mammalian brain. Neuron. 2014;83(1):122–34.
Precise control of gene expression plays fundamental roles in brain development, but the roles of chromatin regulators in neuronal connectivity have remained poorly understood. We report that depletion of the NuRD complex by in vivo RNAi and conditional knockout of the core NuRD subunit Chd4 profoundly impairs the establishment of granule neuron parallel fiber/Purkinje cell synapses in the rodent cerebellar cortex in vivo. By interfacing genome-wide sequencing of transcripts and ChIP-seq analyses, we uncover a network of repressed genes and distinct histone modifications at target gene promoters that are developmentally regulated by the NuRD complex in the cerebellum in vivo. Finally, in a targeted in vivo RNAi screen of NuRD target genes, we identify a program of NuRD-repressed genes that operate as critical regulators of presynaptic differentiation in the cerebellar cortex. Our findings define NuRD-dependent promoter decommissioning as a developmentally regulated programming mechanism that drives synaptic connectivity in the mammalian brain.
Yoon M, McCulley T. Autologous dermal grafts as posterior lamellar spacers in the management of lower eyelid retraction. Ophthalmic Plast Reconstr Surg. 2014;30(1):64–8.
PURPOSE: To determine the safety and efficacy of autologous postauricular dermal grafts as posterior lamellar spacing material in patients with lower eyelid retraction. METHODS: At a tertiary care institution, 10 eyelids of 10 patients (7 men, 3 women; mean 56 years, range 24-78) who underwent repair of lower eyelid retraction using a postauricular dermal graft between July 2008 and December 2010 were retrospectively assessed. Data collected included patient demographics, etiology of retraction, and surgical history. Outcome measures included preoperative and postoperative eyelid position and surgery-related complications. RESULTS: Postoperative results were favorable: mean preoperative inferior scleral show was 3.3 ± 2.6 mm compared with 0.3 ± 1.2 mm postoperatively, p = 0.004 (paired t test). Mean follow up was 39.2 weeks (range 12-94). Complications included keratinization of the graft with vellus hair growth (n = 1) and ectropion (n = 1), both corrected with minor surgical interventions. One patient achieved overcorrection but declined further treatment. No donor site complications were encountered. CONCLUSIONS: These data suggest postauricular dermal grafts are effective posterior lamellar spacers in the correction of eyelid retraction. They have adequate rigidity whilst maintaining sufficient pliability to mold to the globe. Resorption, common to acellular dermis matrix allografts and xenografts, was not encountered. Donor site complications were not encountered. Complications shared with other material include overcorrection and ectropion. Complications unique to autologous dermis include keratinization and hair growth.
Yu H, Vu THK, Cho KS, Guo C, Chen DF. Mobilizing endogenous stem cells for retinal repair. Transl Res. 2014;163(4):387–98.
Irreversible vision loss is most often caused by the loss of function and subsequent death of retinal neurons, such as photoreceptor cells-the cells that initiate vision by capturing and transducing signals of light. One reason why retinal degenerative diseases are devastating is that, once retinal neurons are lost, they don't grow back. Stem cell-based cell replacement strategy for retinal degenerative diseases are leading the way in clinical trials of transplantation therapy, and the exciting findings in both human and animal models point to the possibility of restoring vision through a cell replacement regenerative approach. A less invasive method of retinal regeneration by mobilizing endogenous stem cells is, thus, highly desirable and promising for restoring vision. Although many obstacles remain to be overcome, the field of endogenous retinal repair is progressing at a rapid pace, with encouraging results in recent years.
Saint-Geniez M, Ghelfi E, Liang X, Yu C, Spencer C, Abend S, Hotamisligil G, Cataltepe S. Fatty acid binding protein 4 deficiency protects against oxygen-induced retinopathy in mice. PLoS One. 2014;9(5):e96253.
Retinopathy of prematurity (ROP) is a leading cause of blindness in children worldwide due to increasing survival rates of premature infants. Initial suppression, followed by increased production of the retinal vascular endothelial growth factor-A (VEGF) expression are key events that trigger the pathological neovascularization in ROP. Fatty acid binding protein 4 (FABP4) is an intracellular lipid chaperone that is induced by VEGF in a subset of endothelial cells. FABP4 exhibits a pro-angiogenic function in cultured endothelial cells and in airway microvasculature, but whether it plays a role in modulation of retinal angiogenesis is not known. We hypothesized that FABP4 deficiency could ameliorate pathological retinal vascularization and investigated this hypothesis using a well-characterized mouse model of oxygen-induced retinopathy (OIR). We found that FABP4 was not expressed in retinal vessels, but was present in resident macrophages/microglial cells and endothelial cells of the hyaloid vasculature in the immature retina. While FABP4 expression was not required for normal development of retinal vessels, FABP4 expression was upregulated and localized to neovascular tufts in OIR. FABP4-/- mice demonstrated a significant decrease in neovessel formation as well as a significant improvement in physiological revascularization of the avascular retinal tissues. These alterations in retinal vasculature were accompanied by reduced endothelial cell proliferation, but no effect on apoptosis or macrophage/microglia recruitment. FABP4-/- OIR samples demonstrated decreased expression of genes involved in angiogenesis, such as Placental Growth Factor, and angiopoietin 2. Collectively, our findings suggest FABP4 as a potential target of pathologic retinal angiogenesis in proliferative retinopathies.
Salvador-Culla B, Behlau I, Sayegh R, Stacy R, Dohlman C, Delori F. Very low risk of light-induced retinal damage during Boston keratoprosthesis surgery: a rabbit study. Cornea. 2014;33(2):184–90.
PURPOSE: The aim of this study was to assess the possibility of light damage to the retina by a surgical microscope during implantation of a Boston Keratoprosthesis (B-KPro) in rabbits. METHODS: The retinal irradiance from a Zeiss OPMI Lumera S7 operating microscope was measured at the working distance (16.5 cm). Light transmittance through an isolated B-KPro was measured. A B-KPro was implanted into 1 eye of 12 rabbits with the optic covered during the procedure. The operated eyes were then continuously exposed to a fixed light intensity under the microscope for 1 hour. Fluorescein angiography was carried out on days 2 and 9 postsurgery, after which the animals were euthanized. Further, we compared the potential of these retinal exposures to well-accepted light safety guidelines applicable to humans. RESULTS: Light transmittance of B-KPro revealed a blockage of short wavelengths (<390 nm) and of long wavelengths (1660-1750 nm) of light. In addition, the surgical microscope filtered a part of the blue, ultraviolet, and infrared wavelengths. Neither fluorescein angiography nor a histological examination showed any morphological retinal changes in our rabbits. Moreover, the retinal exposures were well below the safety limits. CONCLUSIONS: Modern surgical microscopes have filters incorporated in them that block the most damaging wavelengths of light. The B-KPro is made of 100% poly(methyl methacrylate), which makes it in itself a blocker of short wavelengths of light. No damage could be demonstrated in the animal study, and the retinal exposures were well below the safety limits. Together, these results suggest that light exposures during B-KPro surgery present a low risk of photochemical damage to the retina.
Santiago, Walia, Sun, Cavallerano, Haddad, Aiello, Silva. Influence of diabetes and diabetes type on anatomic and visual outcomes following central rein vein occlusion. Eye (Lond). 2014;28(3):259–68.
PURPOSE: To determine the influence of diabetes and diabetes type on ocular outcomes following central retinal vein occlusion (CRVO). METHODS: Retrospective chart review of all patients evaluated over a 4-year period in a tertiary diabetes eye care center. Ophthalmic findings were recorded including visual acuity and the presence of retinal neovascularization at presentation, after 3-6 months, and at last follow-up. RESULTS: The records of 19,648 patients (13,571 diabetic; 6077 nondiabetic) were reviewed. The prevalence of CRVO in diabetic patients (N=72) and nondiabetic patients (N=27) were 0.5 and 0.4%, respectively. Disc neovascularization (21.3 vs 0.0%, P=0.05) and panretinal photocoagulation (PRP) (48.7 vs 21.4%, P=0.01) were more common in diabetic patients compared with nondiabetic patients. Compared with type 2 diabetic patients, retinal neovascularization (28.6 vs 3.7%, P=0.004) and subsequent PRP (78.6 vs 41.9%, P=0.01) were more likely in type 1 patients. Optic nerve head collateral vessels (CVs) were observed less than half as often (21.4 vs 56.5%, P=0.04) in patients with type 1 diabetes. Presence of optic nerve head CVs at baseline was associated with less likelihood of PRP (14.3 vs 46.1%, P=0.03). CONCLUSIONS: In this cohort, the rates of CRVO in diabetic and nondiabetic patients were similar to previously published population-based studies. Following CRVO, diabetic patients had higher rates of disc neovascularization and were more likely to require subsequent PRP than nondiabetic patients. As compared with CRVO patients with type 2 diabetes, patients with type 1 diabetes and CRVO had worse anatomic outcomes with substantially increased risks of retinal neovascularization and PRP; however, final visual acuity outcomes were similar.
Sassoubre L, Ramsey M, Gilmore M, Boehm A. Transcriptional response of Enterococcus faecalis to sunlight. J Photochem Photobiol B. 2014;130:349–56.
Microarrays were used to investigate the transcriptional response of Enterococcus faecalis to photostress. E. faecalis are Gram-positive bacteria used as indicators of water quality and have been shown to vary diurnally in response to sunlight. E. faecalis in filtered seawater microcosms were exposed to artificial sunlight for 12h and then placed in the dark for 12h. Transcript abundance was measured at 0, 2, 6, 12, and 24h in the sunlit microcosm and a dark control using microarrays. Culturable E. faecalis concentrations decreased 6-7 orders of magnitude within the first 6h of light exposure. After 12h in the dark, no evidence of dark-repair was observed. Expression data collected after 12h of sunlight exposure revealed a difference in transcript abundance in the light relative to dark microcosms for 35 unique ORFs, 33 ORFs showed increased transcript abundance and 2 ORFs showed reduced transcript abundance. A majority (51%) of the ORFs with increased transcript abundance in the sunlit relative to dark microcosms encoded hypothetical proteins; others were associated with protein synthesis, oxidative stress and DNA repair. Results suggest that E. faecalis exposed to sunlight actively transcribe RNA in response to photostress.
Scarcelli G, Besner S, Pineda R, Yun SH. Biomechanical characterization of keratoconus corneas ex vivo with Brillouin microscopy. Invest Ophthalmol Vis Sci. 2014;55(7):4490–5.
PURPOSE: Loss of corneal strength is a central feature of keratoconus progression. However, it is currently difficult to measure corneal mechanical changes noninvasively. The objective of this study is to evaluate if Brillouin optical microscopy can differentiate the mechanical properties of keratoconic corneas versus healthy corneas ex vivo. METHODS: We obtained eight tissue samples from healthy donor corneas used in Descemet's stripping endothelial keratoplasty (DSEK) and 10 advanced keratoconic corneas from patients undergoing deep anterior lamellar keratoplasty (DALK). Within 2 hours after surgery, a confocal Brillouin microscope using a monochromatic laser at 532 nm was used to map the Brillouin frequency shifts of the corneas. RESULTS: The mean Brillouin shift in the anterior 200 μm of the keratoconic corneas at the cone was measured to be 7.99 ± 0.10 GHz, significantly lower than 8.17 ± 0.06 GHz of the healthy corneas (P < 0.001). The Brillouin shift in the keratoconic corneas decreased with depth from the anterior toward posterior regions with a steeper slope than in the healthy corneas (P < 0.001). Within keratoconic corneas, the Brillouin shift in regions away from the apex of the cone was significantly higher than within the cone region (P < 0.001). CONCLUSIONS: Brillouin measurements revealed notable differences between healthy and keratoconic corneas. Importantly, Brillouin imaging showed that the mechanical loss is primarily concentrated within the area of the keratoconic cone. Outside the cone, the Brillouin shift was comparable with that of healthy corneas. The results demonstrate the potential of Brillouin microscopy for diagnosis and treatment monitoring of keratoconus.