Publications

2014

Marko CK, Tisdale A, Spurr-Michaud S, Evans C, Gipson I. The ocular surface phenotype of Muc5ac and Muc5b null mice. Invest Ophthalmol Vis Sci. 2014;55(1):291–300.
PURPOSE: Recent development of mice null for either Muc5ac or Muc5b mucin allows study of their specific roles at the mouse ocular surface. A recent report indicated that Muc5ac null mice show an ocular surface phenotype similar to that seen in dry eye syndrome. The purpose of our study was to determine the effect of lack of Muc5ac or Muc5b on the ocular surface, and to determine if environmental desiccating stress exacerbated a phenotype. METHODS: Muc5ac null and Muc5b null mice, and their wild-type controls were examined for ocular surface defects by fluorescein staining. The number of goblet cells per area of conjunctival epithelium was counted, and levels of mucin gene expression and genes associated with epithelial stress, keratinization, and differentiation, known to be altered in dry eye syndrome, were assayed. To determine if the null mice would respond more to desiccating stress than their wild-type controls, they were challenged in a controlled environment chamber (CEC) and assessed for changes in fluorescein staining, tear volume, and inflammatory cells within the conjunctival and corneal epithelia. RESULTS: Unlike the previous study, we found no ocular surface phenotype in the Muc5ac null mice, even after exposure to desiccating environmental stress. Similarly, no ocular surface phenotype was present in the Muc5b null mice, either before or after exposure to a dry environment in the CEC. CONCLUSIONS: Our results indicate that deleting either the Muc5ac or Muc5b gene is insufficient to create an observable dry eye phenotype on the ocular surface of these mice.
Matsumoto, Murakami, Kataoka, Lin, Connor, Miller, Zhou, Avruch, Vavvas. Mammalian STE20-like kinase 2, not kinase 1, mediates photoreceptor cell death during retinal detachment. Cell Death Dis. 2014;5:e1269.
Photoreceptor cell death is the definitive cause of vision loss in retinal detachment (RD). Mammalian STE20-like kinase (MST) is a master regulator of both cell death and proliferation and a critical factor in development and tumorigenesis. However, to date the role of MST in neurodegeneration has not been fully explored. Utilizing MST1(-/-) and MST2(-/-) mice we identified MST2, but not MST1, as a regulator of photoreceptor cell death in a mouse model of RD. MST2(-/-) mice demonstrated significantly decreased photoreceptor cell death and outer nuclear layer (ONL) thinning after RD. Additionally, caspase-3 activation was attenuated in MST2(-/-) mice compared to control mice after RD. The transcription of p53 upregulated modulator of apoptosis (PUMA) and Fas was also reduced in MST2(-/-) mice post-RD. Retinas of MST2(-/-) mice displayed suppressed nuclear relocalization of phosphorylated YAP after RD. Consistent with the reduction of photoreceptor cell death, MST2(-/-) mice showed decreased levels of proinflammatory cytokines such as monocyte chemoattractant protein 1 and interleukin 6 as well as attenuated inflammatory CD11b cell infiltration during the early phase of RD. These results identify MST2, not MST1, as a critical regulator of caspase-mediated photoreceptor cell death in the detached retina and indicate its potential as a future neuroprotection target.
Matsumoto H, Kataoka K, Tsoka P, Connor K, Miller J, Vavvas D. Strain difference in photoreceptor cell death after retinal detachment in mice. Invest Ophthalmol Vis Sci. 2014;55(7):4165–74.
PURPOSE: To evaluate the potential for mouse genetic background to effect photoreceptor cell death in response to experimental retinal detachment (RD). METHODS: Retinal detachment was induced in three inbred mouse strains (C57BL/6, BALB/c, and B6129SF2) by subretinal injection of sodium hyaluronate. A time course of photoreceptor cell death was assessed by TUNEL assay. Total photoreceptor cell death was analyzed through comparing the outer nuclear layer (ONL)/inner nuclear layer (INL) ratio 7 days post RD. Western blot analysis or quantitative real-time PCR (qPCR) were performed to assess cell death signaling, expression of endogenous neurotrophin, and levels of apoptosis inhibitors 24 hours after RD. Inflammatory cytokine secretion and inflammatory cell infiltration were quantified by ELISA and immunostaining, respectively. RESULTS: The peak of photoreceptor cell death after RD was at 24 hours in all strains. Photoreceptor cell death as well as monocyte chemoattractant protein 1 and interleukin 6 secretion at 24 hours after RD was the highest in BALB/c, followed in order of magnitude by C57BL/6 and B6129SF2. Conversely, nerve growth factor expression and ONL/INL ratio were the lowest in BALB/c. Apoptosis signaling was higher in C57BL/6, whereas necroptosis signaling was higher in C57BL/6 and BALB/c. Autophagic signaling was higher in BALB/c. X-linked inhibitor of apoptosis (XIAP) and survivin protein levels were lower in C57BL/6 and BALB/c, respectively. Macrophage/microglia infiltration was higher in C57BL/6 and BALB/c at 24 hours after RD. CONCLUSIONS: Photoreceptor cell death after RD was significantly different among the three strains, suggesting the presence of genetic factors that affect photoreceptor cell death after RD.
Michan S, Juan A, Hurst C, Cui Z, Evans L, Hatton C, Pei D, Ju M, Sinclair D, Smith L, Chen J. Sirtuin1 over-expression does not impact retinal vascular and neuronal degeneration in a mouse model of oxygen-induced retinopathy. PLoS One. 2014;9(1):e85031.
Proliferative retinopathy is a leading cause of blindness, including retinopathy of prematurity (ROP) in children and diabetic retinopathy in adults. Retinopathy is characterized by an initial phase of vessel loss, leading to tissue ischemia and hypoxia, followed by sight threatening pathologic neovascularization in the second phase. Previously we found that Sirtuin1 (Sirt1), a metabolically dependent protein deacetylase, regulates vascular regeneration in a mouse model of oxygen-induced proliferative retinopathy (OIR), as neuronal depletion of Sirt1 in retina worsens retinopathy. In this study we assessed whether over-expression of Sirtuin1 in retinal neurons and vessels achieved by crossing Sirt1 over-expressing flox mice with Nestin-Cre mice or Tie2-Cre mice, respectively, may protect against retinopathy. We found that over-expression of Sirt1 in Nestin expressing retinal neurons does not impact vaso-obliteration or pathologic neovascularization in OIR, nor does it influence neuronal degeneration in OIR. Similarly, increased expression of Sirt1 in Tie2 expressing vascular endothelial cells and monocytes/macrophages does not protect retinal vessels in OIR. In addition to the genetic approaches, dietary supplement with Sirt1 activators, resveratrol or SRT1720, were fed to wild type mice with OIR. Neither treatment showed significant vaso-protective effects in retinopathy. Together these results indicate that although endogenous Sirt1 is important as a stress-induced protector in retinopathy, over-expression of Sirt1 or treatment with small molecule activators at the examined doses do not provide additional protection against retinopathy in mice. Further studies are needed to examine in depth whether increasing levels of Sirt1 may serve as a potential therapeutic approach to treat or prevent retinopathy.
Miller J. The Harvard angiogenesis story. Surv Ophthalmol. 2014;59(3):361–4.
I shall discuss the work of researchers at Harvard Medical School who came together in the early 1990s. Scattered across various Harvard-affiliated hospitals and research centers, these individuals were unified by their interest in ocular neovascularization. Together and separately, they investigated models of ocular neovascularization, exploring tumor angiogenesis in eye development and disease.
Mott K, Allen S, Zandian M, Akbari O, Hamrah P, Maazi H, Wechsler S, Sharpe A, Freeman G, Ghiasi H. Inclusion of CD80 in HSV targets the recombinant virus to PD-L1 on DCs and allows productive infection and robust immune responses. PLoS One. 2014;9(1):e87617.
CD80 plays a critical role in stimulation of T cells and subsequent control of infection. To investigate the effect of CD80 on HSV-1 infection, we constructed a recombinant HSV-1 virus that expresses two copies of the CD80 gene in place of the latency associated transcript (LAT). This mutant virus (HSV-CD80) expressed high levels of CD80 and had similar virus replication kinetics as control viruses in rabbit skin cells. In contrast to parental virus, this CD80 expressing recombinant virus replicated efficiently in immature dendritic cells (DCs). Additionally, the susceptibility of immature DCs to HSV-CD80 infection was mediated by CD80 binding to PD-L1 on DCs. This interaction also contributed to a significant increase in T cell activation. Taken together, these results suggest that inclusion of CD80 as a vaccine adjuvant may promote increased vaccine efficacy by enhancing the immune response directly and also indirectly by targeting to DC.
Murakami, Matsumoto, Roh, Giani, Kataoka, Morizane, Kayama, Thanos, Nakatake, Notomi, Hisatomi, Ikeda, Ishibashi, Connor, Miller, Vavvas. Programmed necrosis, not apoptosis, is a key mediator of cell loss and DAMP-mediated inflammation in dsRNA-induced retinal degeneration. Cell Death Differ. 2014;21(2):270–7.
There is no known treatment for the dry form of an age-related macular degeneration (AMD). Cell death and inflammation are important biological processes thought to have central role in AMD. Here we show that receptor-interacting protein (RIP) kinase mediates necrosis and enhances inflammation in a mouse model of retinal degeneration induced by dsRNA, a component of drusen in AMD. In contrast to photoreceptor-induced apoptosis, subretinal injection of the dsRNA analog poly(I : C) caused necrosis of the retinal pigment epithelium (RPE), as well as macrophage infiltration into the outer retinas. In Rip3(-/-) mice, both necrosis and inflammation were prevented, providing substantial protection against poly(I : C)-induced retinal degeneration. Moreover, after poly(I : C) injection, Rip3(-/-) mice displayed decreased levels of pro-inflammatory cytokines (such as TNF-α and IL-6) in the retina, and attenuated intravitreal release of high-mobility group box-1 (HMGB1), a major damage-associated molecular pattern (DAMP). In vitro, poly(I : C)-induced necrosis were inhibited in Rip3-deficient RPE cells, which in turn suppressed HMGB1 release and dampened TNF-α and IL-6 induction evoked by necrotic supernatants. On the other hand, Rip3 deficiency did not modulate directly TNF-α and IL-6 production after poly(I : C) stimulation in RPE cells or macrophages. Therefore, programmed necrosis is crucial in dsRNA-induced retinal degeneration and may promote inflammation by regulating the release of intracellular DAMPs, suggesting novel therapeutic targets for diseases such as AMD.
Nassi J, Gómez-Laberge C, Kreiman G, Born R. Corticocortical feedback increases the spatial extent of normalization. Front Syst Neurosci. 2014;8:105.
Normalization has been proposed as a canonical computation operating across different brain regions, sensory modalities, and species. It provides a good phenomenological description of non-linear response properties in primary visual cortex (V1), including the contrast response function and surround suppression. Despite its widespread application throughout the visual system, the underlying neural mechanisms remain largely unknown. We recently observed that corticocortical feedback contributes to surround suppression in V1, raising the possibility that feedback acts through normalization. To test this idea, we characterized area summation and contrast response properties in V1 with and without feedback from V2 and V3 in alert macaques and applied a standard normalization model to the data. Area summation properties were well explained by a form of divisive normalization, which computes the ratio between a neuron's driving input and the spatially integrated activity of a "normalization pool." Feedback inactivation reduced surround suppression by shrinking the spatial extent of the normalization pool. This effect was independent of the gain modulation thought to mediate the influence of contrast on area summation, which remained intact during feedback inactivation. Contrast sensitivity within the receptive field center was also unaffected by feedback inactivation, providing further evidence that feedback participates in normalization independent of the circuit mechanisms involved in modulating contrast gain and saturation. These results suggest that corticocortical feedback contributes to surround suppression by increasing the visuotopic extent of normalization and, via this mechanism, feedback can play a critical role in contextual information processing.
Newman-Casey PA, Talwar N, Nan B, Musch D, Pasquale L, Stein J. The potential association between postmenopausal hormone use and primary open-angle glaucoma. JAMA Ophthalmol. 2014;132(3):298–303.
IMPORTANCE: Retinal ganglion cells are known to express estrogen receptors and prior studies have suggested an association between postmenopausal hormone (PMH) use and decreased intraocular pressure, suggesting that PMH use may decrease the risk for primary open-angle glaucoma (POAG). OBJECTIVE: To determine whether the use of 3 different classes of PMH affects the risk for POAG. DESIGN, SETTING, AND PARTICIPANTS: Retrospective longitudinal cohort analysis of claims data from women 50 years or older enrolled in a US managed-care plan for at least 4 years in which enrollees had at least 2 visits to an eye care provider during the period 2001 through 2009. EXPOSURE: Postmenopausal hormone medications containing estrogen only, estrogen + progesterone, and estrogen + androgen, as captured from outpatient pharmacy claims over a 4-year period. MAIN OUTCOMES AND MEASURES: Hazard ratios (HRs) for developing incident POAG. RESULTS: Of 152,163 eligible enrollees, 2925 (1.9%) developed POAG. After adjustment for confounding factors, each additional month of use of PMH containing estrogen only was associated with a 0.4% reduced risk for POAG (HR, 0.996 [95% CI, 0.993-0.999]; P = .02). The risk for POAG did not differ with each additional month of use of estrogen + progesterone (HR, 0.994 [95% CI, 0.987-1.001]; P = .08) or estrogen + androgen (HR, 0.999 [95% CI, 0.988-1.011]; P = .89). CONCLUSIONS AND RELEVANCE: Use of PMH preparations containing estrogen may help reduce the risk for POAG. If prospective studies confirm the findings of this analysis, novel treatments for this sight-threatening condition may follow.
Nguyen J, Fay A, Yadav P, MacIntosh P, Metson R. Stereotactic microdebrider in deep lateral orbital decompression for patients with thyroid eye disease. Ophthalmic Plast Reconstr Surg. 2014;30(3):262–6.
PURPOSE: Stereotactic navigation systems have been used in neurosurgery and otolaryngology with great success. The current investigation illustrates the novel use of a microdebrider with built-in stereotactic guidance in a series of thyroid orbitopathy patients who underwent deep lateral orbital wall decompression surgery. METHODS: A noncomparative, interventional, retrospective case series of patients who underwent deep lateral deep orbital wall decompression from 2006 to 2013 was conducted in accordance with Institutional Review Board policy and the Declaration of Helsinki. Patient demographics, indications for surgery, pre-, intra-, and postoperative findings along with complications were recorded. RESULTS: One hundred eight deep lateral orbital decompression surgeries were performed in 69 patients using the Straightshot M4 Microdebrider with built-in stereotactic guidance (Medtronics). Seventy-eight cases were in women and 30 cases were in men. The average age was 50.4 years (SD = 11.9 years). Indications for surgery included proptosis, exposure keratopathy, or compressive optic neuropathy. No patient experienced intraoperative complications. Specifically, cerebrospinal fluid leak, visual loss, infection, or unanticipated inflammation were not encountered. The average postoperative follow-up time was 5.35 months. Mean reduction in proptosis was 3.72 mm (SD = 2.1). Visual acuity improved in 32.4% (35/108) of cases. CONCLUSIONS: This surgical instrument combines a single handpiece locator, microdebrider, irrigator, retractor, and suction device into one. It enhances anatomical localization during orbital decompression and, with an integrated tissue guard, may decrease the risk of injury to orbital soft tissues. Stereotactic navigation enhances the surgeon's ability to determine the maximal limits of decompression in real time by confirming depth of bone removal and may potentially increase surgeons' confidence in orbital decompression surgery.