Publications

2014

Chatterjee A, Villarreal G, Oh DJ, Kang MH, Rhee D. AMP-activated protein kinase regulates intraocular pressure, extracellular matrix, and cytoskeleton in trabecular meshwork. Invest Ophthalmol Vis Sci. 2014;55(5):3127–39.
PURPOSE: In this study, we investigate how adenosine monophosphate-activated protein kinase (AMPK) affects extracellular matrix (ECM) and cellular tone in the trabecular meshwork (TM), and examine how deletion of its catalytic α2 subunit affects IOP and aqueous humor clearance in mice. METHODS: Human TM tissue was examined for expression of AMPKα1 and AMPKα2, genomically distinct isoforms of the AMPK catalytic subunit. Primary cultured human TM cells were treated for 24 hours with the AMPK activator 5-amino-1-β-Dffff-ribofuranosyl-imidazole-4-carboxamide (AICAR), under basal or TGF-β2 stimulatory conditions. Conditioned media (CM) was probed for secreted protein acidic and rich in cysteine (SPARC), thrombospondin-1 (TSP-1), and ECM proteins, and cells were stained for F-actin. Cells underwent adenoviral infection with a dominant negative AMPKα subunit (ad.DN.AMPKα) and were similarly analyzed. Intraocular pressure, central corneal thickness (CCT), and aqueous clearance were measured in AMPKα2-null and wild-type (WT) mice. RESULTS: Both AMPKα1 and AMPKα2 are expressed in TM. AICAR activated AMPKα and suppressed the expression of various ECM proteins under basal and TGF-β2 stimulatory conditions. AICAR decreased F-actin staining and increased the phospho-total RhoA ratio (Ser188). Transforming growth factor-β2 transiently dephosphorylated AMPKα. Infection with ad.DN.AMPKα upregulated various ECM proteins, decreased the phospho-total RhoA ratio, and increased F-actin staining. AMPKα2-null mice exhibited 6% higher IOP and decreased aqueous clearance compared with WT mice, without significant differences in CCT or angle morphology. CONCLUSIONS: Collectively, our data identify AMPK as a critical regulator of ECM homeostasis and cytoskeletal arrangement in the TM. Mice that are AMPKα2-null exhibit higher IOPs and decreased aqueous clearance than their WT counterparts.
Chen L, Kim I, Lane A, Gauthier D, Munzenrider J, Gragoudas E, Miller J. Proton beam irradiation for non-AMD CNV: 2-year results of a randomised clinical trial. Br J Ophthalmol. 2014;98(9):1212–7.
AIMS: To evaluate safety and visual outcomes after proton beam irradiation (PBI) therapy for subfoveal choroidal neovascularisation (CNV) secondary to causes other than age-related macular degeneration (AMD). METHODS: This study is a prospective, unmasked and randomised clinical trial using two dosage regimens, conducted in the Massachusetts Eye and Ear Infirmary. The study included 46 patients with CNV secondary to non-AMD and best-corrected visual acuity of 20/320 or better. Patients were randomly assigned to receive 16 or 24 cobalt gray equivalents (CGE) of PBI in two equal fractions. Complete ophthalmological examinations, fundus photography and fluorescein angiography were performed at baseline and 6, 12, 18 and 24 months after treatment. RESULTS: At 1 year after treatment, 82% and 72% lost fewer than 1.5 lines of vision in the 16 CGE and in 24 CGE groups, respectively. At 2 years after therapy, 77% in the lower dose group and 64% in the higher dose group lost fewer than 1.5 lines of vision. Mild radiation complications such as radiation vasculopathy developed in 17.6% of patients. CONCLUSIONS: PBI is a safe and efficacious treatment for subfoveal CNV not due to AMD. The data with respect to visual outcomes and radiation complications trend in favour of the 16 CGE group, although differences do not reach statistical significance. PBI may be considered as an alternative to current therapies.
Chen, Chauhan, Lee S, Saban, Dana. Chronic dry eye disease is principally mediated by effector memory Th17 cells. Mucosal Immunol. 2014;7(1):38–45.
Recent experimental and clinical data suggest that there is a link between dry eye disease (DED) and T-cell-mediated immunity. However, whether these immune responses are a consequence or cause of ocular surface inflammation remains to be determined. Thus far, only models of acute DED have been used to derive experimental data. This is in contrast to clinical DED which usually presents as a chronic disease. In the present study, using a murine model of chronic DED, it was established that the chronic phase of the disease is accompanied by T helper type 17 (Th17) responses at the ocular surface and that a significant memory T-cell population can be recovered from chronic DED. This memory response is predominantly mediated by Th17 cells. Moreover, adoptive transfer of this memory T-cell population was shown to induce more severe and rapidly progressing DED than did the adoptive transfer of its effector or naive counterparts. Not only do these results clearly demonstrate that effector memory Th17 cells are primarily responsible for maintaining the chronic and relapsing course of DED, but they also highlight a potentially novel therapeutic strategy for targeting memory immune responses in patients with DED.
Cheng L, Desai J, Miranda C, Duncan J, Qiu W, Nugent A, Kolpak A, Wu C, Drokhlyansky E, DeLisle M, Chan WM, Wei Y, Propst F, Reck-Peterson S, Fritzsch B, Engle E. Human CFEOM1 mutations attenuate KIF21A autoinhibition and cause oculomotor axon stalling. Neuron. 2014;82(2):334–49.
The ocular motility disorder "Congenital fibrosis of the extraocular muscles type 1" (CFEOM1) results from heterozygous mutations altering the motor and third coiled-coil stalk of the anterograde kinesin, KIF21A. We demonstrate that Kif21a knockin mice harboring the most common human mutation develop CFEOM. The developing axons of the oculomotor nerve's superior division stall in the proximal nerve; the growth cones enlarge, extend excessive filopodia, and assume random trajectories. Inferior division axons reach the orbit but branch ectopically. We establish a gain-of-function mechanism and find that human motor or stalk mutations attenuate Kif21a autoinhibition, providing in vivo evidence for mammalian kinesin autoregulation. We identify Map1b as a Kif21a-interacting protein and report that Map1b⁻/⁻ mice develop CFEOM. The interaction between Kif21a and Map1b is likely to play a critical role in the pathogenesis of CFEOM1 and highlights a selective vulnerability of the developing oculomotor nerve to perturbations of the axon cytoskeleton.
PURPOSE: To describe the results of photodynamic therapy (PDT) and/or focal laser photocoagulation in the treatment of serous retinal detachments secondary to lupus choroidopathy. METHODS: The medical records of three patients with serous detachments secondary to lupus choroidopathy who were treated with PDT and/or focal laser photocoagulation were reviewed. Concomitant systemic medical therapy as well as visual acuity and optical coherence tomography (OCT) outcomes were recorded. RESULTS: All patients received systemic immunosuppressive therapy and had control of their extraocular manifestations prior to PDT and/or laser photocoagulation. One patient received only focal laser photocoagulation and had complete resolution of the subretinal fluid on OCT. The two other patients received a combination of PDT and focal laser treatment. One had improvement in vision and resolution of subretinal fluid on OCT. The second patient, who had longstanding lupus choroidopathy and associated subretinal fluid and macular edema, had only a significant decrease in fluid on OCT but no vision improvement. CONCLUSION: In conjunction with control of systemic disease, PDT and/or focal laser photocoagulation can be successful in resolving subretinal fluid secondary to lupus choroidopathy.
Ciolino J, Stefanescu C, Ross A, Salvador-Culla B, Cortez P, Ford E, Wymbs K, Sprague S, Mascoop D, Rudina S, Trauger S, Cade F, Kohane D. In vivo performance of a drug-eluting contact lens to treat glaucoma for a month. Biomaterials. 2014;35(1):432–9.
For nearly half a century, contact lenses have been proposed as a means of ocular drug delivery, but achieving controlled drug release has been a significant challenge. We have developed a drug-eluting contact lens designed for prolonged delivery of latanoprost for the treatment of glaucoma, the leading cause of irreversible blindness worldwide. Latanoprost-eluting contact lenses were created by encapsulating latanoprost-poly(lactic-co-glycolic acid) films in methafilcon by ultraviolet light polymerization. In vitro and in vivo studies showed an early burst of drug release followed by sustained release for one month. Contact lenses containing thicker drug-polymer films demonstrated released a greater amount of drug after the initial burst. In vivo, single contact lenses were able to achieve, for at least one month, latanoprost concentrations in the aqueous humor that were comparable to those achieved with topical latanoprost solution, the current first-line treatment for glaucoma. The lenses appeared safe in cell culture and animal studies. This contact lens design can potentially be used as a treatment for glaucoma and as a platform for other ocular drug delivery applications.
Cohen L, Pasquale L. Clinical characteristics and current treatment of glaucoma. Cold Spring Harb Perspect Med. 2014;4(6).
Glaucoma is a neurodegenerative disorder in which degenerating retinal ganglion cells (RGC) produce significant visual disability. Clinically, glaucoma refers to an array of conditions associated with variably elevated intraocular pressure (IOP) that contributes to RGC loss via mechanical stress, vascular abnormalities, and other mechanisms, such as immune phenomena. The clinical diagnosis of glaucoma requires assessment of the ocular anterior segment with slit lamp biomicroscopy, which allows the clinician to recognize signs of conditions that can produce elevated IOP. After measurement of IOP, a specialized prismatic lens called a gonioscope is used to determine whether the angle is physically open or closed. The structural manifestation of RGC loss is optic nerve head atrophy and excavation of the neuroretinal rim tissue. Treatment is guided by addressing secondary causes for elevated IOP (such as inflammation, infection, and ischemia) whenever possible. Subsequently, a variety of medical, laser, and surgical options are used to achieve a target IOP.
Cohen L, Wong J, Jiwani A, Greenstein S, Brauner S, Chen S, Turalba A, Chen T, Shen L, Rhee D, Wiggs J, Kang JH, Loomis S, Pasquale L. A survey of preoperative blood tests in primary open-angle glaucoma patients versus cataract surgery patients. Digit J Ophthalmol. 2014;20(2):20–8.
PURPOSE: To investigate biomarker differences in routine preoperative blood tests performed on primary open-angle glaucoma (POAG) case and control patients presenting for anterior segment eye surgery. METHODS: POAG cases and age-related cataract surgery patients (controls) who underwent anterior segment surgery at Massachusetts Eye and Ear from January 2009 through March 2012 were identified by retrospective record review. Patients with diabetes mellitus, secondary glaucoma, and cataract due to trauma or steroid exposure were excluded. Data on demographic features, preoperative ophthalmological and medical diagnosis, blood pressure, anthropometric measures, basic metabolic panel, and complete blood count were extracted from the medical records. Univariate differences in lab values between POAG cases and controls were assessed using unpaired t tests. Multivariate logistic regression analysis was completed to determine the independent associations of biomarkers with POAG. RESULTS: A total of 150 cases and 150 age-related controls were included. In multivariate analysis, higher AG was inversely associated with POAG (odds ratio [OR] = 0.90; 95% confidence interval [CI], 0.80-1.00), and higher Cl- level was positively associated with POAG (OR = 1.15; 95% CI, 1.02-1.29). The lower AG in POAG patients could be explained by higher IgG levels as the available data in post hoc analysis showed a nonsignificant trend toward higher IgG in cases compared to controls (17 vs 23; 1142 ± 284 mg/dl vs 1028 ± 291 mg/dl; P = 0.22). Furthermore, in multivariable analysis, a higher red blood cell count was also associated with POAG (OR = 1.91; 95% CI, 1.11-3.28). CONCLUSIONS: Patients with POAG presenting for anterior segment surgery had a lower AG compared to age-related cataract surgery patients. The etiology of this reduced gap is unclear but the possible contribution of IgG warrants further exploration. The etiology of higher red blood cell counts in POAG cases is unknown and deserves further exploration.
For profoundly blind individuals, navigating in an unfamiliar building can represent a significant challenge. We investigated the use of an audio-based, virtual environment called Audio-based Environment Simulator (AbES) that can be explored for the purposes of learning the layout of an unfamiliar, complex indoor environment. Furthermore, we compared two modes of interaction with AbES. In one group, blind participants implicitly learned the layout of a target environment while playing an exploratory, goal-directed video game. By comparison, a second group was explicitly taught the same layout following a standard route and instructions provided by a sighted facilitator. As a control, a third group interacted with AbES while playing an exploratory, goal-directed video game however, the explored environment did not correspond to the target layout. Following interaction with AbES, a series of route navigation tasks were carried out in the virtual and physical building represented in the training environment to assess the transfer of acquired spatial information. We found that participants from both modes of interaction were able to transfer the spatial knowledge gained as indexed by their successful route navigation performance. This transfer was not apparent in the control participants. Most notably, the game-based learning strategy was also associated with enhanced performance when participants were required to find alternate routes and short cuts within the target building suggesting that a ludic-based training approach may provide for a more flexible mental representation of the environment. Furthermore, outcome comparisons between early and late blind individuals suggested that greater prior visual experience did not have a significant effect on overall navigation performance following training. Finally, performance did not appear to be associated with other factors of interest such as age, gender, and verbal memory recall. We conclude that the highly interactive and immersive exploration of the virtual environment greatly engages a blind user to develop skills akin to positive near transfer of learning. Learning through a game play strategy appears to confer certain behavioral advantages with respect to how spatial information is acquired and ultimately manipulated for navigation.
Connors E, Chrastil E, Sánchez J, Merabet L. Action video game play and transfer of navigation and spatial cognition skills in adolescents who are blind. Front Hum Neurosci. 2014;8:133.
For individuals who are blind, navigating independently in an unfamiliar environment represents a considerable challenge. Inspired by the rising popularity of video games, we have developed a novel approach to train navigation and spatial cognition skills in adolescents who are blind. Audio-based Environment Simulator (AbES) is a software application that allows for the virtual exploration of an existing building set in an action video game metaphor. Using this ludic-based approach to learning, we investigated the ability and efficacy of adolescents with early onset blindness to acquire spatial information gained from the exploration of a target virtual indoor environment. Following game play, participants were assessed on their ability to transfer and mentally manipulate acquired spatial information on a set of navigation tasks carried out in the real environment. Success in transfer of navigation skill performance was markedly high suggesting that interacting with AbES leads to the generation of an accurate spatial mental representation. Furthermore, there was a positive correlation between success in game play and navigation task performance. The role of virtual environments and gaming in the development of mental spatial representations is also discussed. We conclude that this game based learning approach can facilitate the transfer of spatial knowledge and further, can be used by individuals who are blind for the purposes of navigation in real-world environments.