Publications

2014

Brodowska K, Theodoropoulou S, Meyer Zu Hörste M, Paschalis E, Takeuchi K, Scott G, Ramsey D, Kiernan E, Hoang M, Cichy J, Miller J, Gragoudas E, Vavvas D. Effects of metformin on retinoblastoma growth in vitro and in vivo.. Int J Oncol. 2014;45(6):2311–24.
Recent studies suggest that the anti-diabetic drug metformin may reduce the risk of cancer and have anti-proliferative effects for some but not all cancers. In this study, we examined the effects of metformin on human retinoblastoma cell proliferation in vitro and in vivo. Two different human retinoblastoma cell lines (Y79, WERI) were treated with metformin in vitro and xenografts of Y79 cells were established in nu/nu immune-deficient mice and used to assess the effects of pharmacological levels of metformin in vivo. Metformin inhibited proliferation of the retinoblastoma cells in vitro. Similar to other studies, high concentrations of metformin (mM) blocked the cell cycle in G0‑G1, indicated by a strong decrease of G1 cyclins, especially cyclin D, cyclin-dependent kinases (4 and 6), and flow cytometry assessment of the cell cycle. This was associated with activation of AMPK, inhibition of the mTOR pathways and autophagy marker LC3B. However, metformin failed to suppress growth of xenografted tumors of Y79 human retinoblastoma cells in nu/nu mice, even when treated with a maximally tolerated dose level achieved in human patients. In conclusion, suprapharmacological levels (mM) of metformin, well above those tolerated in vivo, inhibited the proliferation of retinoblastoma cells in vitro. However, physiological levels of metformin, such as seen in the clinical setting, did not affect the growth of retinoblastoma cells in vitro or in vivo. This suggests that the potential beneficial effects of metformin seen in epidemiological studies may be limited to specific tumor types or be related to indirect effects/mechanisms not observed under acute laboratory conditions.
Lee WJ, Sobrin L, Lee MJ, Kang MH, Seong M, Cho H. The relationship between diabetic retinopathy and diabetic nephropathy in a population-based study in Korea (KNHANES V-2,3).. Invest Ophthalmol Vis Sci. 2014;

PURPOSE. To determine the risk factors for and relationship between diabetic retinopathy (DR) and diabetic nephropathy (DN), including microalbuminuria and overt nephropathy, in a population-based study of diabetes mellitus (DM) patients in Korea. METHODS. This was a population-based, cross-sectional study. From the fifth (2011, 2012) Korea National Health and Nutrition Examination Survey (KNHANES), 971 participants with type 2 DM were included. The prevalence of DR and DN was determined. Multivariate logistic regression was performed to determine risk factors, including DR, associated with DN in the Korean population. RESULTS. In DM patients, we observed a prevalence of 20.0% for any DR and 3.8% for proliferative diabetic retinopathy (PDR). Microalbuminuria prevalence was 19.3% and overt nephropathy prevalence was 5.5%. The risk factors of microalbuminuria were presence of hypertension, higher systolic blood pressure, serum hemoglobin A1c (HbA1c) and serum blood urea nitrogen level as well as the presence of PDR. The risk factors of overt nephropathy were long duration of DM, high levels of HbA1c, systolic blood pressure, total cholesterol and serum creatinine as well as the presence of DR. CONCLUSIONS. PDR is associated with microalbuminuria and DR is associated with overt nephropathy in Korean DM patients. Our findings suggest that when an ophthalmologist finds the presence of DR or PDR, timely evaluation of the patient's renal status should be recommended.

Malik A, Vierbuchen T, Hemberg M, Rubin A, Ling E, Couch C, Stroud H, Spiegel I, Farh KKH, Harmin D, Greenberg M. Genome-wide identification and characterization of functional neuronal activity-dependent enhancers.. Nat Neurosci. 2014;17(10):1330–9.

Experience-dependent gene transcription is required for nervous system development and function. However, the DNA regulatory elements that control this program of gene expression are not well defined. Here we characterize the enhancers that function across the genome to mediate activity-dependent transcription in mouse cortical neurons. We find that the subset of enhancers enriched for monomethylation of histone H3 Lys4 (H3K4me1) and binding of the transcriptional coactivator CREBBP (also called CBP) that shows increased acetylation of histone H3 Lys27 (H3K27ac) after membrane depolarization of cortical neurons functions to regulate activity-dependent transcription. A subset of these enhancers appears to require binding of FOS, which was previously thought to bind primarily to promoters. These findings suggest that FOS functions at enhancers to control activity-dependent gene programs that are critical for nervous system function and provide a resource of functional cis-regulatory elements that may give insight into the genetic variants that contribute to brain development and disease.

Hasegawa E, Sweigard H, Husain D, Olivares A, Chang B, Smith K, Birsner A, D’Amato R, Michaud N, Han Y, Vavvas D, Miller J, Haider N, Connor K. Characterization of a spontaneous retinal neovascular mouse model.. PLoS One. 2014;9(9):e106507.

BACKGROUND: Vision loss due to vascular disease of the retina is a leading cause of blindness in the world. Retinal angiomatous proliferation (RAP) is a subgroup of neovascular age-related macular degeneration (AMD), whereby abnormal blood vessels develop in the retina leading to debilitating vision loss and eventual blindness. The novel mouse strain, neoretinal vascularization 2 (NRV2), shows spontaneous fundus changes associated with abnormal neovascularization. The purpose of this study is to characterize the induction of pathologic angiogenesis in this mouse model. METHODS: The NRV2 mice were examined from postnatal day 12 (p12) to 3 months. The phenotypic changes within the retina were evaluated by fundus photography, fluorescein angiography, optical coherence tomography, and immunohistochemical and electron microscopic analysis. The pathological neovascularization was imaged by confocal microscopy and reconstructed using three-dimensional image analysis software. RESULTS: We found that NRV2 mice develop multifocal retinal depigmentation in the posterior fundus. Depigmented lesions developed vascular leakage observed by fluorescein angiography. The spontaneous angiogenesis arose from the retinal vascular plexus at postnatal day (p)15 and extended toward retinal pigment epithelium (RPE). By three months of age, histological analysis revealed encapsulation of the neovascular lesion by the RPE in the photoreceptor cell layer and subretinal space. CONCLUSIONS: The NRV2 mouse strain develops early neovascular lesions within the retina, which grow downward towards the RPE beginning at p15. This retinal neovascularization model mimics early stages of human retinal angiomatous proliferation (RAP) and will likely be a useful in elucidating targeted therapeutics for patients with ocular neovascular disease.

Pasquale L, Jiwani A, Zehavi-Dorin T, Majd A, Rhee D, Chen T, Turalba A, Shen L, Brauner S, Grosskreutz C, Gardiner M, Chen S, Borboli-Gerogiannis S, Greenstein S, Chang K, Ritch R, Loomis S, Kang J, Wiggs J, Levkovitch-Verbin H. Solar exposure and residential geographic history in relation to exfoliation syndrome in the United States and Israel.. JAMA Ophthalmol. 2014;132(12):1439–45.
IMPORTANCE: Residential (geographic) history and extent of solar exposure may be important risk factors for exfoliation syndrome (XFS) but, to our knowledge, detailed lifetime solar exposure has not been previously evaluated in XFS. OBJECTIVE: To assess the relation between residential history, solar exposure, and XFS. DESIGN, SETTING, AND PARTICIPANTS: This clinic-based case-control study was conducted in the United States and Israel. It involved XFS cases and control individuals (all ≥60-year-old white individuals) enrolled from 2010 to 2012 (United States: 118 cases and 106 control participants; Israel: 67 cases and 72 control participants). MAIN OUTCOMES AND MEASURES: Weighted lifetime average latitude of residence and average number of hours per week spent outdoors as determined by validated questionnaires. RESULTS: In multivariable analyses, each degree of weighted lifetime average residential latitude away from the equator was associated with 11% increased odds of XFS (pooled odds ratio [OR], 1.11; 95% CI, 1.05-1.17; P < .001). Furthermore, every hour per week spent outdoors during the summer, averaged over a lifetime, was associated with 4% increased odds of XFS (pooled OR, 1.04; 95% CI, 1.00-1.07; P = .03). For every 1% of average lifetime summer time between 10 am and 4 pm that sunglasses were worn, the odds of XFS decreased by 2% (OR, 0.98; 95% CI, 0.97-0.99; P < .001) in the United States but not in Israel (OR, 1.00; 95% CI, 0.99-1.01; P = .92; P for heterogeneity = .005). In the United States, after controlling for important environmental covariates, history of work over water or snow was associated with increased odds of XFS (OR, 3.86; 95% CI, 1.36-10.9); in Israel, there were too few people with such history for analysis. We did not identify an association between brimmed hat wear and XFS (P > .57). CONCLUSIONS AND RELEVANCE: Lifetime outdoor activities may contribute to XFS. The association with work over snow or water and the lack of association with brimmed hat wear suggests that ocular exposure to light from reflective surfaces may be an important type of exposure in XFS etiology.
Gene regulatory networks (GRNs) regulate critical events during development. In complex tissues, such as the mammalian central nervous system (CNS), networks likely provide the complex regulatory interactions needed to direct the specification of the many CNS cell types. Here, we dissect a GRN that regulates a binary fate decision between two siblings in the murine retina, the rod photoreceptor and bipolar interneuron. The GRN centers on Blimp1, one of the transcription factors (TFs) that regulates the rod versus bipolar cell fate decision. We identified a cis-regulatory module (CRM), B108, that mimics Blimp1 expression. Deletion of genomic B108 by CRISPR/Cas9 in vivo using electroporation abolished the function of Blimp1. Otx2 and RORβ were found to regulate Blimp1 expression via B108, and Blimp1 and Otx2 were shown to form a negative feedback loop that regulates the level of Otx2, which regulates the production of the correct ratio of rods and bipolar cells.
Lessell S, E Grzybowski A. Idiopathic opticochiasmatic arachnoiditis.. J Neuroophthalmol. 2014;34(3):251–4.

: A critical review of the literature indicates that idiopathic opticochiasmatic arachnoiditis, once considered an important consideration in patients with otherwise unexplained optic atrophy, is not a valid disease entity.