Publications

2013

Li, Hodges, Jiao, Carozza, Shatos, Chiang, Serhan, Dartt. Resolvin D1 and aspirin-triggered resolvin D1 regulate histamine-stimulated conjunctival goblet cell secretion. Mucosal Immunol. 2013;6(6):1119–30.
Resolution of inflammation is an active process mediated by pro-resolution lipid mediators. As resolvin (Rv) D1 is produced in the cornea, pro-resolution mediators could be effective in regulating inflammatory responses to histamine in allergic conjunctivitis. Two key mediators of resolution are the D-series resolvins RvD1 or aspirin-triggered RvD1 (AT-RvD1). We used cultured conjunctival goblet cells to determine whether histamine actions can be terminated during allergic responses. We found cross-talk between two types of G protein-coupled receptors (GPRs), as RvD1 interacts with its receptor GPR32 to block histamine-stimulated H1 receptor increases in intracellular [Ca(2+)] ([Ca(2+)]i) preventing H1 receptor-mediated responses. In human and rat conjunctival goblet cells, RvD1 and AT-RvD1 each block histamine-stimulated secretion by preventing its increase in [Ca(2+)]i and activation of extracellular regulated-protein kinase (ERK)1/2. We suggest that D-series resolvins regulate histamine responses in the eye and offer new treatment approaches for allergic conjunctivitis or other histamine-dependent pathologies.
Li D, Shatos M, Hodges R, Dartt DA. Role of PKCα activation of Src, PI-3K/AKT, and ERK in EGF-stimulated proliferation of rat and human conjunctival goblet cells. Invest Ophthalmol Vis Sci. 2013;54(8):5661–74.
PURPOSE: To determine the order and components of the signaling pathway utilized by epidermal growth factor (EGF) to stimulate conjunctival goblet cell proliferation. METHODS: Goblet cells from rat bulbar and forniceal conjunctiva and human bulbar conjunctiva were grown in organ culture. Goblet cells (GCs) were serum starved for 24 hours and preincubated with inhibitors for 30 minutes or small interfering RNA (siRNA) for 48 hours prior to addition of EGF. Proliferation was then measured or Western blot analysis was performed using antibodies against phosphorylated protein kinase B (AKT), extracellular signal-regulated kinase 1/2 (ERK1/2), or the non-receptor tyrosine kinase Src. Rat GCs were also incubated with adenoviruses expressing dominant negative protein kinase Cα (DNPKCα) or constitutively activated protein kinase Cα (myrPKCα), and activation of AKT and ERK1/2 was determined by Western blot analysis. RESULTS: Inhibitors of phosphoinositol-3 kinase (PI-3K)/AKT pathway blocked EGF-stimulated ERK1/2 activation and GC proliferation. Inhibitors of EGF-stimulated ERK1/2 activity did not inhibit AKT activation but blocked proliferation. DNPKCα blocked EGF-stimulated activation of AKT and ERK1/2 while myrPKCα increased activation of these kinases. Inhibitors of PI-3K, ERK1/2, and protein kinase C (PKC) blocked myrPKCα-stimulated GC proliferation. EGF and myrPKCα increased phosphorylation of Src, and inhibition of Src with the chemical inhibitor PP1 or siRNA inhibited EGF-stimulated GC proliferation. CONCLUSIONS: We found that EGF activates a major pathway to stimulate goblet cell proliferation. This pathway consists of induction of phospholipase C (PLC)γ to activate PKCα. Active PKCα phosphorylates Src to induce PI-3K to phosphorylate AKT that subsequently activates the ERK1/2 cascade to stimulate goblet cell proliferation.
Li D, Jiao J, Shatos M, Hodges R, Dartt DA. Effect of VIP on intracellular [Ca2+], extracellular regulated kinase 1/2, and secretion in cultured rat conjunctival goblet cells. Invest Ophthalmol Vis Sci. 2013;54(4):2872–84.
PURPOSE: To determine the intracellular signaling pathways that vasoactive intestinal peptide (VIP) uses to stimulate high molecular weight glycoconjugate secretion from cultured rat conjunctival goblet cells. METHODS: Goblet cells from rat bulbar and forniceal conjunctiva were grown in organ culture. Presence and localization of VIP receptors (VPAC1 and 2) were determined by RT-PCR, immunofluorescence microscopy and Western blot analysis. Intracellular [Ca(2+)] ([Ca(2+)]i) was measured using fura-2. Extracellular signal-regulated kinase (ERK)-1/2 activity was determined by Western blot analysis. High molecular weight glycoconjugate secretion was measured with an enzyme-linked lectin assay on cultured goblet cells that were serum-starved for 2 hours before stimulation with VIP, VPAC1-, or VPAC2-specific agonists. Inhibitors were added 30 minutes prior to VIP. Activation of epidermal growth factor receptor (EGFR) was measured by immunoprecipitation using an antibody against pTyr followed by Western blot analysis with an antibody against EGFR. RESULTS: Both VIP receptors were present in rat conjunctiva and cultured goblet cells. VIP- and VPAC-specific agonists increased [Ca(2+)]i and secretion in a concentration-dependent manner. VIP also increased ERK1/2 activity, VIP-stimulated increase in [Ca(2+)]i. Secretion, but not ERK1/2 activity, was inhibited by the protein kinase A inhibitor, H89. VIP-stimulated secretion was inhibited by siRNA for ERK2 but not by siRNA for EGFR. VIP did not increase the phosphorylation of the EGFR. CONCLUSIONS: In conclusion, in cultured rat conjunctival goblet cells, VPAC1 and 2 receptors are functional. VIP stimulates a cAMP-dependent increase in [Ca(2+)]i and glycoconjugate secretion, but not ERK1/2 activation. VIP does not activate with EGFR.
Liu Y, Yang X, Utheim TP, Guo C, Xiao M, Liu Y, Yin Z, Ma J. Correlation of cytokine levels and microglial cell infiltration during retinal degeneration in RCS rats. PLoS One. 2013;8(12):e82061.
Microglial cells, which are immunocompetent cells, are involved in all diseases of the central nervous system. During their activation in various diseases, a variety of soluble factors are released. In the present study, the correlation between cytokine levels and microglial cell migration in the course of retinal degeneration of Royal College of Surgeons (RCS) rats was evaluated. MFG-E8 and CD11b were used to confirm the microglial cells. In the retina of RCS rats, the mRNA expression of seven genes (MFG-E8 and its integrins αυ and ß5, CD11b and the cytokines TNF-α, IL-1ß, and MCP-1) formed almost similar bimodal peak distributions, which were centred at P7 and P45 to P60. In contrast, in rdy rats, which comprised the control group, a unimodal peak distribution centred at P14 was observed. The gene expression accompanied the activation and migration of microglial cells from the inner to the outer layer of the retina during the process of degeneration. Principal component analysis and discriminant function analysis revealed that the expression of these seven genes, especially TNF-α and CD11b, positively correlated with retinal degeneration and microglial activity during retinal degeneration in RCS rats, but not in the control rats. Furthermore, linear regression analysis demonstrated a significant correlation between the expression of these genes and the activation of microglial cells in the dystrophic retina. Our findings suggest that the suppression of microglial cells and the blockade of their cytotoxic effects may constitute a novel therapeutic strategy for treating photoreceptor death in various retinal disorders.
Lye-Barthel M, Sun D, Jakobs T. Morphology of astrocytes in a glaucomatous optic nerve. Invest Ophthalmol Vis Sci. 2013;54(2):909–17.
PURPOSE: To establish the morphologic changes of astrocytes in the glial lamina of glaucomatous mice. METHODS: A strain of mice that expresses GFP in individual astrocytes (hGFAPpr-GFP) was crossed into the DBA/2J strain that develops glaucoma. In the resulting strain (D2.hGFAPpr-GFP) we assessed the severity of glaucoma by staining the retina for neurofilaments and counting the neurons of the retinal ganglion cell layer. We observed the morphology of astrocytes in the glial lamina of the optic nerves. RESULTS: D2.hGFAPpr-GFP mice developed glaucoma in an age-dependent manner. Astrocytes in the glial lamina showed morphologic changes that correlated with the severity of glaucoma. The cells showed thickening of processes from 1.3 ± 0.28 μm in nondiseased animals to 1.71 ± 0.46 μm in eyes with moderate glaucoma and 2.1 ± 0.42 μm in those with severe glaucoma. Their spatial coverage, as determined by their convex polygon area, was reduced in eyes with severe glaucoma. The astrocytes in severely glaucomatous optic nerves also showed simplification of their processes. In 6-month-old mice with no obvious signs of degeneration in the retina, we found astrocytes with appendages growing out of primary astrocyte processes into the axon bundles. This localized hypertrophy of processes was never observed in the hGFAPpr-GFP strain. CONCLUSIONS: Confirming results after optic nerve crush, astrocytes in glaucomatous optic nerves had thickened and simplified processes, and reduced spatial coverage. We also found evidence of localized sprouting of new processes in early stages of the disease, before detectable changes in ganglion cell number.
PURPOSE: To compare long-term ophthalmic outcomes in infants treated for unilateral coronal synostosis (UCS) by endoscopic strip craniectomy (ESC) and helmet therapy with those treated by fronto-orbital advancement (FOA). METHODS: Consecutive patients with UCS, uncomplicated by other suture synostosis, were identified by a retrospective review of medical records. Assessment of presence of amblyopia, cycloplegic refraction, strabismus, and strabismus surgical intervention at all visits was recorded. RESULTS: Between 2004 and 2010, 22 patients were treated by FOA (mean follow-up, 21.5 months) and 21 patients with ESC and helmet therapy (mean follow-up, 23.5 months). The mean aniso-astigmatism was equal; however, the SD was greater for those treated by FOA (P < 0.05). A more severe pattern of strabismus developed in those treated by FOA (P < 0.0001). Those treated by FOA were more likely to have amblyopia (P = 0.0015) and to undergo surgical correction of their strabismus (odds ratio, 6.3:1). CONCLUSIONS: Children with UCS treated with ESC and helmeting had less severe overelevation in adduction, amblyopia, extremes of astigmatism, and less need for strabismus surgery than those treated by FOA. Although the reason for these more favorable outcomes remains uncertain, we speculate that the earlier timing of ESC or differences in the anatomical changes resulting from the two procedures may play a role.
Mansouri B, Stacy R, Kruger J, Cestari D. Deprivation amblyopia and congenital hereditary cataract. Semin Ophthalmol. 2013;28(5-6):321–6.
Amblyopia is a neurodevelopmental disorder of vision associated with decreased visual acuity, poor or absent stereopsis, and suppression of information from one eye.(1,2) Amblyopia may be caused by strabismus (strabismic amblyopia), refractive error (anisometropic amblyopia), or deprivation from obstructed vision (deprivation amblyopia). 1 In the developed world, amblyopia is the most common cause of childhood visual impairment, 3 which reduces quality of life 4 and also almost doubles the lifetime risk of legal blindness.(5, 6) Successful treatment of amblyopia greatly depends on early detection and treatment of predisposing disorders such as congenital cataract, which is the most common cause of deprivational amblyopia. Understanding the genetic causes of congenital cataract leads to more effective screening tests, early detection and treatment of infants and children who are at high risk for hereditary congenital cataract.
Marko C, Menon B, Chen G, Whitsett J, Clevers H, Gipson I. Spdef null mice lack conjunctival goblet cells and provide a model of dry eye. Am J Pathol. 2013;183(1):35–48.
Goblet cell numbers decrease within the conjunctival epithelium in drying and cicatrizing ocular surface diseases. Factors regulating goblet cell differentiation in conjunctival epithelium are unknown. Recent data indicate that the transcription factor SAM-pointed domain epithelial-specific transcription factor (Spdef) is essential for goblet cell differentiation in tracheobronchial and gastrointestinal epithelium of mice. Using Spdef(-/-) mice, we determined that Spdef is required for conjunctival goblet cell differentiation and that Spdef(-/-) mice, which lack conjunctival goblet cells, have significantly increased corneal surface fluorescein staining and tear volume, a phenotype consistent with dry eye. Microarray analysis of conjunctival epithelium in Spdef(-/-) mice revealed down-regulation of goblet cell-specific genes (Muc5ac, Tff1, Gcnt3). Up-regulated genes included epithelial cell differentiation/keratinization genes (Sprr2h, Tgm1) and proinflammatory genes (Il1-α, Il-1β, Tnf-α), all of which are up-regulated in dry eye. Interestingly, four Wnt pathway genes were down-regulated. SPDEF expression was significantly decreased in the conjunctival epithelium of Sjögren syndrome patients with dry eye and decreased goblet cell mucin expression. These data demonstrate that Spdef is required for conjunctival goblet cell differentiation and down-regulation of SPDEF may play a role in human dry eye with goblet cell loss. Spdef(-/-) mice have an ocular surface phenotype similar to that in moderate dry eye, providing a new, more convenient model for the disease.
Marra K, Yonekawa Y, Papakostas T, Arroyo J. Indications and techniques of endoscope assisted vitrectomy. J Ophthalmic Vis Res. 2013;8(3):282–90.
The popularization of ophthalmic endoscopy has been promoted by recent technological advancements that increase the number of indications for endoscopy. These advancements have improved the endoscope's capabilities in its two fundamental surgical advantages: (1) bypassing anterior segment opacities, and (2) visualizing anteriorly positioned structures such as the ciliary bodies and sub-iris space. In this article, the current state of the ophthalmic endoscope is reviewed alongside its growing number of applications in glaucoma, vitreoretinal, and ocular trauma surgery. We describe the role of endoscopy in endocyclophotocoagulation for glaucoma, cyclitic membrane peeling in hypotony, retinal detachment surgery, intraocular foreign body removal, severe endophthalmitis, and pediatric traumatic vitreoretinal surgery. This review examines both the pearls and limitations of the ophthalmic application of endoscopy. In doing so, we hope to provide guidelines for using the endoscope and also to highlight applications of endoscopy that merit further study.