Publications

2012

Kohanim S, Daniels A, Huynh N, Eliott D, Chodosh J. Utility of ocular ultrasonography in diagnosing infectious endophthalmitis in patients with media opacities. Semin Ophthalmol. 2012;27(5-6):242–5.
Assessment of patients with infectious endophthalmitis is frequently limited by media opacities, and ocular ultrasonography is routinely performed in this setting. We examined the literature to assess the level of evidence for the utility of ocular ultrasonography in these patients. Common ultrasonographic findings reported include low amplitude mobile echoes, vitreous membranes, and thickening of the retina and choroid. Based on the available evidence, we conclude that ocular ultrasound may be a useful adjunct in guiding treatment and minimizing complications. While positive findings may be confirmatory in cases in which the clinical suspicion is high, ocular ultrasound alone cannot be used to prove or to exclude the diagnosis of infectious endophthalmitis.
Kos V, Desjardins C, Griggs A, Cerqueira G, Van Tonder A, Holden M, Godfrey P, Palmer K, Bodi K, Mongodin E, Wortman J, Feldgarden M, Lawley T, Gill S, Haas B, Birren B, Gilmore M. Comparative genomics of vancomycin-resistant Staphylococcus aureus strains and their positions within the clade most commonly associated with Methicillin-resistant S. aureus hospital-acquired infection in the United States. MBio. 2012;3(3).
UNLABELLED: Methicillin-resistant Staphylococcus aureus (MRSA) strains are leading causes of hospital-acquired infections in the United States, and clonal cluster 5 (CC5) is the predominant lineage responsible for these infections. Since 2002, there have been 12 cases of vancomycin-resistant S. aureus (VRSA) infection in the United States-all CC5 strains. To understand this genetic background and what distinguishes it from other lineages, we generated and analyzed high-quality draft genome sequences for all available VRSA strains. Sequence comparisons show unambiguously that each strain independently acquired Tn1546 and that all VRSA strains last shared a common ancestor over 50 years ago, well before the occurrence of vancomycin resistance in this species. In contrast to existing hypotheses on what predisposes this lineage to acquire Tn1546, the barrier posed by restriction systems appears to be intact in most VRSA strains. However, VRSA (and other CC5) strains were found to possess a constellation of traits that appears to be optimized for proliferation in precisely the types of polymicrobic infection where transfer could occur. They lack a bacteriocin operon that would be predicted to limit the occurrence of non-CC5 strains in mixed infection and harbor a cluster of unique superantigens and lipoproteins to confound host immunity. A frameshift in dprA, which in other microbes influences uptake of foreign DNA, may also make this lineage conducive to foreign DNA acquisition. IMPORTANCE: Invasive methicillin-resistant Staphylococcus aureus (MRSA) infection now ranks among the leading causes of death in the United States. Vancomycin is a key last-line bactericidal drug for treating these infections. However, since 2002, vancomycin resistance has entered this species. Of the now 12 cases of vancomycin-resistant S. aureus (VRSA), each was believed to represent a new acquisition of the vancomycin-resistant transposon Tn1546 from enterococcal donors. All acquisitions of Tn1546 so far have occurred in MRSA strains of the clonal cluster 5 genetic background, the most common hospital lineage causing hospital-acquired MRSA infection. To understand the nature of these strains, we determined and examined the nucleotide sequences of the genomes of all available VRSA. Genome comparison identified candidate features that position strains of this lineage well for acquiring resistance to antibiotics in mixed infection.
Kovacs K, Wagley S, Quirk M, Ceron O, Silva P, Singh R, Gukasyan H, Arroyo J. Pharmacokinetic study of vitreous and serum concentrations of triamcinolone acetonide after posterior sub-tenon’s injection. Am J Ophthalmol. 2012;153(5):939–48.
PURPOSE: To compare a theoretical pharmacokinetic model of triamcinolone acetonide after posterior sub-Tenon's injection with experimental serum and undiluted vitreous triamcinolone acetonide concentrations obtained during pars plana vitrectomy. DESIGN: Clinical-practice, prospective, interventional case series study. METHODS: This study compared computer-modeled triamcinolone acetonide diffusion after posterior sub-Tenon's injection with triamcinolone acetonide levels in experimental undiluted vitreous and serum samples from 57 patients undergoing vitrectomy assessed via mass spectrometry and high-pressure liquid chromatography. At least 5 pairs of samples were collected at each of 7 time points (1 day, 3 days, and 1, 2, 3, 4, and 8 weeks) after triamcinolone acetonide injection, with 6 controls without injection. Cortisol levels were measured in 31 sets of samples. RESULTS: The theoretical model predicted that triamcinolone acetonide levels in systemic blood, vitreous, and choroidal extracellular matrix would plateau after 3 days at 15 ng/mL, 227 ng/mL and 2230 ng/mL, respectively. Experimental vitreous levels of triamcinolone peaked at 111 ng/mL at day 1, then reached a plateau in the range 15 to 25 ng/mL, while serum triamcinolone levels peaked at day 3 near 35 ng/mL and plateaued near 2 to 8 ng/mL. Serum triamcinolone and cortisol levels were inversely correlated (Spearman -0.42, P = .02). CONCLUSIONS: The theoretical model predicts efficient delivery of triamcinolone acetonide from the posterior sub-Tenon's space to the extracellular choroidal matrix. The experimental findings demonstrate low levels of serum triamcinolone that alter systemic cortisol levels and higher vitreous levels lasting at least 1 month. Both assessments support trans-scleral delivery of posterior sub-Tenon's triamcinolone.
Kruger J, Lessell S, Cestari D. Neuro-imaging: a review for the general ophthalmologist. Semin Ophthalmol. 2012;27(5-6):192–6.
The diagnosis of many neuro-ophthalmic conditions is facilitated with neuro-imaging. The two main modalities are Computed Tomography (CT) and Magnetic Resonance Imaging (MRI). Clinicians who refer patients for either of these techniques must not only know which of them to choose, but also where the imaging should be performed (e.g. brain, orbit), whether or not contrast is indicated, and if angiography should be supplemented. These complexities often result in imaging studies that are either unneeded or unhelpful. The goal of this manuscript is to provide a practical set of guidelines for the general ophthalmologist of how to choose the correct parameters for neuro-imaging studies.
Kumar R, Dohlman C, Chodosh J. Oral acetazolamide after Boston keratoprosthesis in Stevens-Johnson syndrome. BMC Res Notes. 2012;5:205.
BACKGROUND: Stevens-Johnson syndrome/toxic epidermal necrolysis (SJS/TEN) is a rare but severe and sometimes fatal condition associated with exposure to medications; sulfamethoxazole is among the most common causes. We sought to address the safety of acetazolamide, a chemically related compound, in patients with prior SJS/TEN and glaucoma. A retrospective case series is described of patients at the Massachusetts Eye and Ear Infirmary who underwent keratoprosthesis surgery for corneal blindness from SJS/TEN, and later required oral acetazolamide for elevated intraocular pressure. FINDINGS: Over the last 10 years, 17 patients with SJS/TEN received a Boston keratoprosthesis. Of these, 11 developed elevated intraocular pressure that required administration of oral acetazolamide. One of 11 developed a mild allergic reaction, but no patient experienced a recurrence of SJS/TEN or any severe adverse reaction. CONCLUSION: Although an increase in the rate of recurrent SJS/TEN due to oral acetazolamide would not necessarily be apparent after treating only 11 patients, in our series, acetazolamide administration was well tolerated without serious sequela.
PURPOSE: To study sub-basal corneal nerve alterations in patients with acute Acanthamoeba keratitis (AK) and fungal keratitis (FK), using laser in vivo confocal microscopy (IVCM). METHODS: A retrospective analysis of IVCM (Heidelberg Retina Tomograph 3/Rostock Cornea Module) images of 10 AK corneas and 4 FK corneas was performed, and the results compared with those of 10 normal and 12 acute herpetic keratitis (HK) corneas. Sub-basal corneal nerves were analyzed with respect to total number of nerves, main nerve trunks, branching pattern and total length of nerves per image, as well as tortuosity. For each variable, results for three frames were averaged and analyzed using analysis of variance. RESULTS: Total corneal nerve length was significantly (P < 0.0001) reduced in patients with AK (193.4 ± 124.5 μm) and FK (268.6 ± 257.4 μm) when compared with normal controls (3811.84 ± 911.4 μm). Total nerve counts in patients with AK (3.9 ± 1.2) and FK (3.6 ± 3.2) were significantly (P < 0.0001) decreased in comparison with normal controls (24.7 ± 5.5). The number of main nerve trunks and nerve branching was found to be significantly lower in AK and FK corneas, when compared with controls. There was a statistically significant decrease in the above parameters when compared with HK controls. CONCLUSIONS: The sub-basal corneal nerve plexus is significantly diminished in eyes with AK and FK, as demonstrated by IVCM. These results are more profound than previously reported findings of a diminished nerve plexus in HK.
Lan Y, Kodati S, Lee HS, Omoto M, Jin Y, Chauhan S. Kinetics and function of mesenchymal stem cells in corneal injury. Invest Ophthalmol Vis Sci. 2012;53(7):3638–44.
PURPOSE: Bone marrow-derived mesenchymal stem cells (MSCs) hold great promise for wound healing and tissue regeneration. In the present study, we investigated the impact of corneal injury on the homeostasis of endogenous MSCs, and the potential of MSCs to home to injured tissue and promote corneal repair. METHODS: Corneal injury in mice was induced by thermal cauterization. Circulating MSCs were quantified by flow cytometric analysis. Ex vivo expanded red Q-dot-labeled or GFP+ bone marrow-derived MSCs were intravenously injected after injury and detected using epifluorescence microscopy. Corneal fluorescein staining was performed to evaluate epithelial regeneration. RESULTS: Following the induction of corneal injury in mice, a 2-fold increase in the frequency of circulating endogenous MSCs was observed within 48 hours of injury, which was accompanied by increased levels of the stem cell chemoattractants, substance P and SDF-1, in both the injured cornea and blood. Systemically administered MSCs homed to the injured cornea, but not to the normal cornea, and showed long-term survival. In addition, in the setting of corneal injury, MSC administration showed significant and rapid corneal epithelial regeneration. CONCLUSIONS: These findings provide novel evidence that corneal injury causes significant mobilization of endogenous MSCs into blood, and that MSCs home specifically to the injured cornea and promote regeneration, highlighting the therapeutic implications of MSC-mediated tissue repair in corneal injury.
Lefebvre D, Freitag S. Update on imaging of the lacrimal drainage system. Semin Ophthalmol. 2012;27(5-6):175–86.
Epiphora is a common problem seen by the ophthalmologist. There are numerous etiologies of a watering eye, and the underlying diagnosis is not always clear. A variety of in-office examination techniques and procedures exist to aid with diagnosis and determination of appropriate therapy, but sometimes the diagnosis remains elusive, or an instituted therapy fails. Lacrimal imaging, particularly in these cases, can be helpful in assessing the function and anatomy of the lacrimal drainage system. This review serves to examine the literature of the last 10 years concerning imaging of the lacrimal drainage system.
Li D, Carozza R, Shatos M, Hodges R, Dartt DA. Effect of histamine on Ca(2+)-dependent signaling pathways in rat conjunctival goblet cells. Invest Ophthalmol Vis Sci. 2012;53(11):6928–38.
PURPOSE: The purpose of this study was to determine the Ca(2+)-dependent cellular signaling pathways used by histamine to stimulate conjunctival goblet cell secretion. METHODS: Cultured rat goblet cells were grown in RPMI 1640. Goblet cell secretion of high molecular weight glycoconjugates was measured by an enzyme-linked lectin assay. Intracellular [Ca(2+)] ([Ca(2+)](i)) was measured by loading cultured cells with the Ca(2+) sensitive dye fura-2. The level of [Ca(2+)](i) was measured using fluorescence microscopy. Extracellular regulated kinase (ERK) 2 was depleted using small interfering RNA (siRNA). RESULTS: Histamine-stimulated conjunctival goblet cell secretion of high molecular weight glycoproteins was blocked by removal of extracellular Ca(2+) and depletion of ERK2 by siRNA. Histamine increase in [Ca(2+)](i) was desensitized by repeated addition of agonist and blocked by a phospholipase C antagonist. Histamine at higher doses increased [Ca(2+)](i) by stimulating influx of extracellular Ca(2+), but at a lower dose released Ca(2+) from intracellular stores. Activation of each histamine receptor subtype (H(1)-H(4)) increased [Ca(2+)](i) and histamine stimulation was blocked by antagonists of each receptor subtype. The H(2) receptor subtype increase in [Ca(2+)](i) was cAMP dependent. CONCLUSIONS: We conclude that histamine activates phospholipase C to release intracellular Ca(2+) that induces the influx of extracellular Ca(2+) and activates ERK1/2 to stimulate conjunctival goblet cell mucous secretion, and that activation of all four histamine receptor subtypes can increase [Ca(2+)](i).
Liu Q, Collin R, Cremers F, Hollander A, Born I, Pierce E. Expression of wild-type Rp1 protein in Rp1 knock-in mice rescues the retinal degeneration phenotype. PLoS One. 2012;7(8):e43251.
Mutations in the retinitis pigmentosa 1 (RP1) gene are a common cause of autosomal dominant retinitis pigmentosa (adRP), and have also been found to cause autosomal recessive RP (arRP) in a few families. The 33 dominant mutations and 6 recessive RP1 mutations identified to date are all nonsense or frameshift mutations, and almost exclusively (38 out of 39) are located in the 4(th) and final exon of RP1. To better understand the underlying disease mechanisms of and help develop therapeutic strategies for RP1 disease, we performed a series of human genetic and animal studies using gene targeted and transgenic mice. Here we report that a frameshift mutation in the 3(rd) exon of RP1 (c.686delC; p.P229QfsX35) found in a patient with recessive RP1 disease causes RP in the homozygous state, whereas the heterozygous carriers are unaffected, confirming that haploinsufficiency is not the causative mechanism for RP1 disease. We then generated Rp1 knock-in mice with a nonsense Q662X mutation in exon 4, as well as Rp1 transgenic mice carrying a wild-type BAC Rp1 transgene. The Rp1-Q662X allele produces a truncated Rp1 protein, and homozygous Rp1-Q662X mice experience a progressive photoreceptor degeneration characterized disorganization of photoreceptor outer segments. This phenotype could be prevented by expression of a normal amount of Rp1 protein from the BAC transgene without removal of the mutant Rp1-Q662X protein. Over-expression of Rp1 protein in additional BAC Rp1 transgenic lines resulted in retinal degeneration. These findings suggest that the truncated Rp1-Q662X protein does not exert a toxic gain-of-function effect. These results also imply that in principle gene augmentation therapy could be beneficial for both recessive and dominant RP1 patients, but the levels of RP1 protein delivered for therapy will have to be carefully controlled.