Publications

2021

Chang EK, Gupta S, Chachanidze M, Miller J, Chang TC, Solá-Del Valle D. Combined pars plana glaucoma drainage device placement and vitrectomy using a vitrectomy sclerotomy site for tube placement: a case series. BMC Ophthalmol. 2021;21(1):106.
PURPOSE: The purpose of this study is to report the safety and efficacy of pars plana glaucoma drainage devices with pars plana vitrectomy using one of the vitrectomy sclerotomy sites for tube placement in patients with refractory glaucoma. METHODS: Retrospective case series of 28 eyes of 28 patients who underwent combined pars plana glaucoma drainage device and pars plana vitrectomy between November 2016 and September 2019 at Massachusetts Eye and Ear. Main outcome measures were intraocular pressure (IOP), glaucoma medication burden, best corrected visual acuity, and complications. Statistical tests were performed with R and included Kaplan-Meier analyses, Wilcoxon paired signed-rank tests, and Fisher tests. RESULTS: Mean IOP decreased from 22.8 mmHg to 11.8 mmHg at 1.5 years (p = 0.002), and mean medication burden decreased from 4.3 to 2.1 at 1.5 years (p = 0.004). Both IOP and medication burden were significantly lower at all follow-up time points. The probability of achieving 5 < IOP ≤ 18 mmHg with at least 20% IOP reduction from preoperative levels was 86.4% at 1 year and 59.8% at 1.5 years. At their last visit, three eyes (10.7%) achieved complete success with IOP reduction as above without medications, and 14 eyes (50.0%) achieved qualified success with medications. Hypotony was observed in 1 eye (3.6%) prior to 3 months postoperatively and 0 eyes after 3 months. Visual acuity was unchanged or improved in 23 eyes (82.1%) at their last follow-up. Two patients had a visual acuity decrease of > 2 lines. Two eyes required subsequent pars plana vitrectomies for tube obstruction, and one eye had transient hypotony. CONCLUSIONS: The results of pars plana glaucoma drainage device and pars plana vitrectomy using one of the vitrectomy sclerotomy sites for tube placement are promising, resulting in significant IOP and medication-burden reductions through postoperative year 1.5 without additional risk of postoperative complications. Inserting glaucoma drainage devices into an existing vitrectomy sclerotomy site may potentially save surgical time by obviating the need to create another sclerotomy for tube placement and suture one of the vitrectomy ports.
WuDunn D, Takusagawa H, Sit A, Rosdahl J, Radhakrishnan S, Hoguet A, Han Y, Chen T. OCT Angiography for the Diagnosis of Glaucoma: A Report by the American Academy of Ophthalmology. Ophthalmology. 2021;128(8):1222–1235.
PURPOSE: To review the current published literature on the use of OCT angiography (OCTA) to help detect changes associated with the diagnosis of primary open-angle glaucoma. METHODS: Searches of the peer-reviewed literature were conducted in March 2018, June 2018, April 2019, December 2019, and June 2020 in the PubMed and Cochrane Library databases. Abstracts of 459 articles were examined to exclude reviews and non-English articles. After inclusion and exclusion criteria were applied, 75 articles were selected and the panel methodologist rated them for strength of evidence. Three articles were rated level I and 57 articles were rated level II. The 15 level III articles were excluded. RESULTS: OCT angiography can detect decreased capillary vessel density within the peripapillary nerve fiber layer (level II) and macula (level I and II) in patients with suspected glaucoma, preperimetric glaucoma, and perimetric glaucoma. The degree of vessel density loss correlates significantly with glaucoma severity both overall and topographically (level II) as well as longitudinally (level I). For differentiating glaucomatous from healthy eyes, some studies found that peripapillary and macular vessel density measurements by OCTA show a diagnostic ability (area under the receiver operating characteristic curve) that is comparable with structural OCT retinal nerve fiber and ganglion cell thickness measurements, whereas other studies found that structural OCT measurements perform better. Choroidal or deep-layer microvasculature dropout as measured by OCTA is also associated with glaucoma damage (level I and II). Lower peripapillary and macular vessel density and choroidal microvasculature dropout are associated with faster rates of disease progression (level I and II). CONCLUSIONS: Vessel density loss associated with glaucoma can be detected by OCTA. Peripapillary, macular, and choroidal vessel density parameters may complement visual field and structural OCT measurements in the diagnosis of glaucoma.
Ludwig C, Moon J, Garg I, Miller J. Ultra-Widefield Imaging for Evaluation of the Myopic Eye. Semin Ophthalmol. 2021;36(4):185–190.
Topic : Ultra-widefield (UWF) imaging of the myopic eye. Clinical Relevance : Myopes, and particularly high and pathologic myopes, present a unique challenge in fundoscopic imaging. Critical pathology is often located in the anteriormost portion of the retina, variations in posterior segment contour are difficult to capture in two-dimensional images, and extremes in axial length make simply focusing imaging devices difficult. Methods: We review the evolution of modalities for ophthalmic imaging (color fundus photography [CFP], optical coherence topography [OCT], angiography, artificial intelligence [AI]) to present day UWF technology and its impact on our understanding of myopia. Results: Advances in UWF technology address many of the challenges in fundoscopic imaging of myopes, providing new insights into the structure and function of the myopic eye. UWF CFP improves our ability to detect and document anterior peripheral pathology prevalent in approximately half of all high myopes. UWF OCT better captures the staphylomatous contour of the myopic eye, providing enhanced visualization of the vitreoretinal interface and progressive development of myopic traction maculopathy. UWF angiography highlights the posterior vortex veins, thin choriocapillaris, far peripheral avascularity, and peripheral retinal capillary microaneurysms more prevalent in the myopic eye. Researchers have demonstrated the ability of AI algorithms to predict refractive error, and great potential remains in the use of AI technology for the screening and prevention of myopic disease. Conclusion: We note significant progress in our ability to capture anterior pathology and improved image quality of the posterior segment of high and pathologic myopes. The next jump forward for UWF imaging will be the ability to capture a high quality ora to ora multimodal fundoscopic image in a single scan that will allow for sensitive AI-assisted screening of myopic disease.
Ehrenberg M, Bagdonite-Bejarano L, Fulton A, Orenstein N, Yahalom C. Genetic causes of nystagmus, foveal hypoplasia and subnormal visual acuity- other than albinism. Ophthalmic Genet. 2021;42(3):243–251.
Background: To describe genetic molecular findings in individuals with congenital nystagmus, foveal hypoplasia, and subnormal vision, with normal ocular pigmentation (absence of diffuse transillumination or transparent retinal pigment typical for albinism).Methods: This is a retrospective, multicenter study of ophthalmic, systemic, and genetic features, as collected from medical records of patients diagnosed with infantile nystagmus and foveal hypoplasia. Ophthalmic findings include best-corrected visual acuity (BCVA), biomicroscopic examination, cycloplegic refraction, retinal examination, macular optical coherence tomography, and electroretinography. Genetic information was retrieved from the participating genetic clinics and included ethnicity and molecular diagnosis.Results: Thirty-one individuals met the inclusion criteria and had a secure molecular diagnosis. Mutations in two genes predominated, constituting 77.4% of all the represented genes: SLC38A8 (45.1%) and PAX6 (32.3%). Seventy-eight percent of the subjects who had a measurable BCVA had moderate and severe visual impairment (range 20/80 to 20/270). Most patients with a mutation in SLC38A8 had mild to moderate astigmatism, while most patients with PAX6 mutation had moderate and severe myopia. Patients in the PAX6 group had variable degrees of anterior segment manifestations.Conclusion: In our cohort, the main causative genes for congenital nystagmus and foveal hypoplasia in normally pigmented eyes were SLC38A8 and PAX6. A mild phenotype in PAX6 mutations may be an under-diagnosed cause of nystagmus and foveal hypoplasia. Reaching an accurate genetic diagnosis is essential for both the patients and their family members. This enables predicting disease prognosis, tailoring correct follow-up, and providing genetic counseling and family planning to affected families.
Waksmunski A, Song Y, Kinzy T, Laux R, Sewell J, Fuzzell D, Fuzzell S, Miller S, Wiggs J, Pasquale L, Skarie J, Haines J, Cooke Bailey J. The GGLEAM Study: Understanding Glaucoma in the Ohio Amish. Int J Environ Res Public Health. 2021;18(4).
Glaucoma leads to millions of cases of visual impairment and blindness around the world. Its susceptibility is shaped by both environmental and genetic risk factors. Although over 120 risk loci have been identified for glaucoma, a large portion of its heritability is still unexplained. Here we describe the foundation of the Genetics of GLaucoma Evaluation in the AMish (GGLEAM) study to investigate the genetic architecture of glaucoma in the Ohio Amish, which exhibits lower genetic and environmental heterogeneity compared to the general population. To date, we have enrolled 81 Amish individuals in our study from Holmes County, Ohio. As a part of our enrollment process, 62 GGLEAM study participants (42 glaucoma-affected and 20 unaffected individuals) received comprehensive eye examinations and glaucoma evaluations. Using the data from the Anabaptist Genealogy Database, we found that 80 of the GGLEAM study participants were related to one another through a large, multigenerational pedigree containing 1586 people. We plan to integrate the health and kinship data obtained for the GGLEAM study to interrogate glaucoma genetics and pathophysiology in this unique population.
Sharifi S, Islam MM, Sharifi H, Islam R, Huq T, Nilsson P, Mollnes T, Tran K, Patzer C, Dohlman C, Patra H, Paschalis E, Gonzalez-Andrades M, Chodosh J. Electron Beam Sterilization of Poly(Methyl Methacrylate)-Physicochemical and Biological Aspects. Macromol Biosci. 2021;21(4):e2000379.
Electron beam (E-beam) irradiation is an attractive and efficient method for sterilizing clinically implantable medical devices made of natural and/or synthetic materials such as poly(methyl methacrylate) (PMMA). As ionizing irradiation can affect the physicochemical properties of PMMA, understanding the consequences of E-beam sterilization on the intrinsic properties of PMMA is vital for clinical implementation. A detailed assessment of the chemical, optical, mechanical, morphological, and biological properties of medical-grade PMMA after E-beam sterilization at 25 and 50 kiloGray (kGy) is reported. Fourier transform infrared spectroscopy, thermogravimetric analysis, and differential scanning calorimetry studies indicate that E-beam irradiation has minimal effect on the chemical properties of the PMMA at these doses. While 25 kGy irradiation does not alter the mechanical and optical properties of the PMMA, 50 kGy reduces the flexural strength and transparency by 10% and 2%, respectively. Atomic force microscopy demonstrates that E-beam irradiation reduces the surface roughness of PMMA in a dose dependent manner. Live-Dead, AlamarBlue, immunocytochemistry, and complement activation studies show that E-beam irradiation up to 50 kGy has no adverse effect on the biocompatibility of the PMMA. These findings suggest that E-beam irradiation at 25 kGy may be a safe and efficient alternative for PMMA sterilization.
Mitchell W, Marmamula S, Zebardast N, Ng W, Locascio J, Kumbam T, Brahmanandam S, Barrenkala NR. Psychometric validation techniques applied to the IND-VFQ-33 visual function questionnaire: the Hyderabad ocular morbidity in the elderly study (HOMES). BMC Med Res Methodol. 2021;21(1):26.
BACKGROUND: Over 2 billion people suffer from vision impairment or blindness globally, and access to validated visual measurement tools in imperative in accurately describing and managing the burden of eye disease. The present study applies contemporary psychometric validation techniques to the widely used 33-item Indian Visual Function Questionnaire (IND-VFQ-33). METHODS: We first estimated the polychoric correlation between each pair of items. Next, an unrotated and oblique Promax rotated factor analysis, item response theory (IRT, using a graded response model (GRM)), and differential item functioning (DIF) testing were applied to the IND-VFQ-33. We subsequently propose a validated IND-VFQ-33 questionnaire after psychometric testing, data reduction, and adjustment. RESULTS: Exploratory unrotated factor analysis identified two factors; one with a particularly high eigenvalue (18.1) and a second with a lower eigenvalue still above our threshold (1.1). A subsequent oblique Promax factor rotation was undertaken for a 2-factor solution, revealing two moderately correlated factors (+ 0.68) with clinically discrete item loadings onto either Factor 1 (21 items; collectively labelled "daily activities") or Factor 2 (5 items; collectively labelled "bright lights"). IRT confirmed high item discrimination for all remaining items with good separation between difficulty thresholds. We found significant DIF on depression for six items in Factor 1 (all uniform DIF, except item 21 (non-uniform DIF) with no substantive difference in beta thresholds for any item and no substantive difference in expected individual or sum score, by depression at baseline. For Factor 2, only one item demonstrated significant uniform DIF on gender, similarly without major differences in beta thresholds or expected total score between gender at baseline. Consequently, no further item recalibration or reduction was undertaken after IRT and DIF analysis. CONCLUSION: Applying IRT and DIF validation techniques to the IND-VFQ-33 identified 2 discrete factors with 26 uniquely-loading items, clinically representative of difficulty performing daily activities and experiencing difficulty due to bright lights/glare respectively. The proposed modified scale may be useful in evaluating symptomatic disease progression or response to treatment in an Indian population.
Milante R, Guo X, Neitzel A, Kretz A, Mukherjee R, Friedman D, Repka M, Collins M. Analysis of vision screening failures in a school-based vision program (2016-19). J AAPOS. 2021;
BACKGROUND: Vision screenings of a school-based program were conducted in state-mandated grades (pre-kindergarten [pre-K] or kindergarten [K], 1st and 8th grade), and nonmandated grades (2nd to 7th). METHODS: During school years 2016-19, 51,593 pre-K to 8th grade students from 123 Baltimore City Public Schools underwent vision screenings, with 85% of the schools qualifying for Free and Reduced Price Meals. Assessments included distance visual acuity, Spot photoscreening, stereopsis, and cover testing. Screening failures were analyzed by grade using aggregate data. Failure rates for mandated and nonmandated grades were compared using a logistic regression model, and visual acuity distributions were analyzed using individual data. RESULTS: Over the 3-year period, 17,414 (34%) of students failed vision screening. Failure rates by grade ranged from 28% to 38%. Children in kindergarten and 3rd grade and higher were statistically more likely to fail screening than those in 1st grade. Reduced visual acuity was the most common reason for failure (91%). Failure rates were significantly higher in nonmandated grades than in state-mandated testing grades (34.7% vs 32.5% [P < 0.001]). Mean visual acuity of all students who failed vision screening was 20/50 in the worse-seeing eye and was 20/40 in the better-seeing eye. CONCLUSIONS: One-third of students failed vision screening. High screening failure rates across all grades suggest that screening in select grade levels, as currently mandated in Maryland schools, is inadequate for detecting vision problems in the low-income communities served by this program.
Hellgren G, Lundgren P, Pivodic A, Löfqvist C, Nilsson A, Ley D, Sävman K, Smith L, Hellström A. Decreased Platelet Counts and Serum Levels of VEGF-A, PDGF-BB, and BDNF in Extremely Preterm Infants Developing Severe ROP. Neonatology. 2021;:1–10.
INTRODUCTION: Thrombocytopenia has been identified as an independent risk factor for retinopathy of prematurity (ROP), although underlying mechanisms are unknown. In this study, the association of platelet count and serum platelet-derived factors with ROP was investigated. METHODS: Data for 78 infants born at gestational age (GA) <28 weeks were included. Infants were classified as having no/mild ROP or severe ROP. Serum levels of vascular endothelial growth factor A, platelet-derived growth factor BB, and brain-derived neurotrophic factor were measured in serum samples collected from birth until postmenstrual age (PMA) 40 weeks. Platelet counts were obtained from samples taken for clinical indication. RESULTS: Postnatal platelet counts and serum concentrations of the 3 growth factors followed the same postnatal pattern, with lower levels in infants developing severe ROP at PMA 32 and 36 weeks (p < 0.05-0.001). With adjustment for GA, low platelet counts and low serum concentrations of all 3 factors at PMA 32 weeks were significantly associated with severe ROP. Serum concentrations of all 3 factors also strongly correlated with platelet count (p < 0.001). CONCLUSION: In this article, we show that ROP, platelet counts, and specific pro-angiogenic factors correlate. These data suggest that platelet-released factors might be involved in the regulation of retinal and systemic angiogenesis after extremely preterm birth. Further investigations are needed.