- Home
- August 2014
August 2014
PURPOSE: We characterized antigen-presenting cell (APC)-relevant chemokine receptor expression in dry eye disease (DED), and investigated the effect of topical CC chemokine receptor (CCR)-7 blockade specifically on Th17 cell immunity and dry eye disease severity. METHODS: We induced DED in female C57BL/6 mice. Chemokine receptor expression by corneal APCs was characterized using immunohistochemistry. To determine the functional role of CCR7 in DED, mice were treated topically with either anti-CCR7, a control isotype antibody, or left untreated, and clinical disease severity, Th17 responses, and molecular markers of DED were quantified. RESULTS: Frequencies of CD11b(+) cells and their chemokine expression were increased in the cornea of DED mice. Mice treated topically with anti-CCR7 antibody displayed a significant reduction in clinical disease severity and Th17 response compared to the isotype and untreated groups. Topical CCR7 blockade was effective in ameliorating DED in its acute and chronic stages. CONCLUSIONS: Our findings suggest that CCR7-mediated trafficking of APCs drives the induction and maintenance of Th17 immunity in DED and that CCR7 blockade is effective in suppressing the immunopathogenic mechanisms in DED.
Neuropilin-1 (NRP1) is a receptor for vascular endothelial growth factor (VEGF). A soluble isoform of Nrp1 (sNrp1) has not been described in the mouse. Our goal was to examine the expression of mouse sNrp1 during liver development and regeneration.sNrp1 was cloned from mouse liver. The expression of sNrp1 and VEGF was examined in mouse liver during post-natal development and regeneration using northern blot, western blot, in situ hybridisation, and immunohistochemical analyses. HGF/NRP1 binding was examined in vitro.A novel 588-amino acid sNrp1 isoform was found to contain the ligand binding regions of Nrp1. The adult liver expressed more sNrp1 than full-length Nrp1. In vivo, hepatocytes constitutively expressed VEGF and sNrp1 in the quiescent state. sNrp1 was highly up-regulated at P20, a time point coinciding with a plateau in liver and body weights. Following hepatectomy, endogenous levels of sNrp1 decreased during the rapid growth phase, and VEGF levels were highest just prior to and during the angiogenic phase. sNrp1 levels again rose 5-10 days post-hepatectomy, presumably to control regeneration. HGF protein bound NRP1 and binding was competed with sNRP1.We cloned a novel mouse sNrp1 isoform from liver and provide evidence that this endogenous angiogenesis inhibitor may regulate VEGF or HGF bioavailability during normal physiological growth and development as well as during liver regeneration.
In the so-called McGurk illusion, when the synchronized presentation of the visual stimulus /ga/ is paired with the auditory stimulus /ba/, people in general hear it as /da/. Multisensory integration processing underlying this illusion seems to occur within the Superior Temporal Sulcus (STS). Herein, we present evidence demonstrating that bilateral cathodal transcranial direct current stimulation (tDCS) of this area can decrease the McGurk illusion-type responses. Additionally, we show that the manipulation of this audio-visual integrated output occurs irrespective of the number of eye-fixations on the mouth of the speaker. Bilateral anodal tDCS of the Parietal Cortex also modulates the illusion, but in the opposite manner, inducing more illusion-type responses. This is the first demonstration of using non-invasive brain stimulation to modulate multisensory speech perception in an illusory context (i.e., both increasing and decreasing illusion-type responses to a verbal audio-visual integration task). These findings provide clear evidence that both the superior temporal and parietal areas contribute to multisensory integration processing related to speech perception. Specifically, STS seems fundamental for the temporal synchronization and integration of auditory and visual inputs. For its part, posterior parietal cortex (PPC) may adjust the arrival of incoming audio and visual information to STS thereby enhancing their interaction in this latter area.
OBJECTIVE: We characterized and correlated endothelial progenitor cells (EPCs) and circulating progenitor cells (CPCs) with lack of vascular complications in the Joslin Medalist Study in patients with type 1 diabetes for 50 years or longer. RESEARCH DESIGN AND METHODS: EPC and CPC levels were ascertained by flow cytometry and compared among Medalists (n = 172) with or without diabetic retinopathy (DR; n = 84 of 162), neuropathy (n = 94 of 165), diabetic nephropathy (DN; n = 18 of 172), cardiovascular disease (CVD; n = 63 of 168), age-matched controls (n = 83), type 2 diabetic patients (n = 36), and younger type 1 diabetic patients (n = 31). Mitogens, inflammatory cytokines, and oxidative markers were measured in blood or urine. Migration of cultured peripheral blood mononuclear cells (PBMCs) from Medalists and age-matched controls were compared. RESULTS: Medalists' EPC and CPC levels equaled those of their nondiabetic age-matched controls, were 10% higher than those in younger type 1 diabetic patients, and were 20% higher than those in age-matched type 2 diabetic patients. CPC levels were 15% higher in Medalists without CVD and nephropathy than in those affected, whereas EPC levels were significantly higher in those without peripheral vascular disease (PVD) than those with PVD. Stromal-derived factor 1 (SDF-1) levels were higher in Medalists with CVD, DN, and DR than in those not affected and their controls. IGF-I levels were lower in Medalists and correlated inversely with CPC levels. Additionally, cultured PBMCs from Medalists migrated more than those from nondiabetic controls. CONCLUSIONS: Normal levels of EPC and CPC in the Medalists, unlike other groups with diabetes, especially those without CVD, support the idea that endogenous factors exist to neutralize the adverse effects of metabolic abnormalities of diabetes on vascular tissues.
In this report, we describe the development of a modified adeno-associated virus (AAV) capsid and promoter for transduction of retinal ON-bipolar cells. The bipolar cells, which are post-synaptic to the photoreceptors, are important retinal targets for both basic and preclinical research. In particular, a therapeutic strategy under investigation for advanced forms of blindness involves using optogenetic molecules to render ON-bipolar cells light-sensitive. Currently, delivery of adequate levels of gene expression is a limiting step for this approach. The synthetic AAV capsid and promoter described here achieves high level of optogenetic transgene expression in ON-bipolar cells. This evokes high-frequency (~100 Hz) spiking responses in ganglion cells of previously blind, rd1, mice. Our vector is a promising vehicle for further development toward potential clinical use.
Mutations in the ubiquitously expressed pre-mRNA processing factors 3, 8, and 31 (PRPF3, PRPF8, and PRPF31) cause nonsyndromic dominant retinitis pigmentosa in humans, an inherited retinal degeneration. It is unclear what mechanisms, or which cell types of the retina, are affected. Transgenic mice with the human mutations in these genes display late-onset morphological changes in the retinal pigment epithelium (RPE). To determine whether the observed morphological changes are preceded by abnormal RPE function, we investigated its phagocytic function in Prpf3(T494M/T494M), Prpf8(H2309P/H2309P), and Prpf31(+/-) mice. We observe decreased phagocytosis in primary RPE cultures from mutant mice, and this is replicated by shRNA-mediated knockdown of PRPF31 in human ARPE-19 cells. The diurnal rhythmicity of phagocytosis is almost lost, indicated by the marked attenuation of the phagocytic burst 2 hours after light onset. The strength of adhesion between RPE apical microvilli and photoreceptor outer segments also declined during peak adhesion in all mutants. In all models, at least one of the receptors involved in binding and internalization of shed photoreceptor outer segments was subjected to changes in localization. Although the mechanism underlying these changes in RPE function is yet to be elucidated, these data are consistent with the mouse RPE being the primary cell affected by mutations in the RNA splicing factors, and these changes occur at an early age.
