Galectins have emerged as potent immunoregulatory agents that control chronic inflammation through distinct mechanisms. Here, we report that treatment with Galectin-8 (Gal-8), a tandem-repeat member of the galectin family, reduces retinal pathology and prevents photoreceptor cell damage in a murine model of experimental autoimmune uveitis. Gal-8 treatment increased the number of regulatory T cells (Treg) in both the draining lymph node (dLN) and the inflamed retina. Moreover, a greater percentage of Treg cells in the dLN and retina of Gal-8 treated animals expressed the inhibitory coreceptor cytotoxic T lymphocyte antigen (CTLA)-4, the immunosuppressive cytokine IL-10, and the tissue-homing integrin CD103. Treg cells in the retina of Gal-8-treated mice were primarily inducible Treg cells that lack the expression of neuropilin-1. In addition, Gal-8 treatment blunted production of inflammatory cytokines by retinal T helper type (TH) 1 and TH17 cells. The effect of Gal-8 on T cell differentiation and/or function was specific for tissues undergoing an active immune response, as Gal-8 treatment had no effect on T cell populations in the spleen. Given the need for rational therapies for managing human uveitis, Gal-8 emerges as an attractive therapeutic candidate not only for treating retinal autoimmune diseases, but also for other TH1- and TH17-mediated inflammatory disorders.
- Home
- June 2015
June 2015
Adult neural stem/progenitor (B1) cells within the walls of the lateral ventricles generate different types of neurons for the olfactory bulb (OB). The location of B1 cells determines the types of OB neurons they generate. Here we show that the majority of mouse B1 cell precursors are produced between embryonic days (E) 13.5 and 15.5 and remain largely quiescent until they become reactivated postnatally. Using a retroviral library carrying over 100,000 genetic tags, we found that B1 cells share a common progenitor with embryonic cells of the cortex, striatum, and septum, but this lineage relationship is lost before E15.5. The regional specification of B1 cells is evident as early as E11.5 and is spatially linked to the production of neurons that populate different areas of the forebrain. This study reveals an early embryonic regional specification of postnatal neural stem cells and the lineage relationship between them and embryonic progenitor cells.
NR2E3 encodes the photoreceptor-specific nuclear hormone receptor that acts as a repressor of cone-specific gene expression in rod photoreceptors, and as an activator of several rod-specific genes. Recessive variants located in the ligand-binding domain (LBD) of NR2E3 cause enhanced short wavelength sensitive- (S-) cone syndrome (ESCS), a retinal degeneration characterized by an excess of S-cones and non-functional rods. We analyzed the dimerization properties of NR2E3 and the effect of disease-causing LBD missense variants by bioluminescence resonance energy transfer (BRET(2) ) protein interaction assays. Homodimerization was not affected in presence of p.A256V, p.R039G, p.R311Q, and p.R334G variants, but abolished in presence of p.L263P, p.L336P, p.L353V, p.R385P, and p.M407K variants. Homology modeling predicted structural changes induced by NR2E3 LBD variants. NR2E3 LBD variants did not affect interaction with CRX, but with NRL and rev-erbα/NR1D1. CRX and NRL heterodimerized more efficiently together, than did either with NR2E3. NR2E3 did not heterodimerize with TLX/NR2E1 and RXRα/NR2C1. The identification of a new compound heterozygous patient with detectable rod function, who expressed solely the p.A256V variant protein, suggests a correlation between LBD variants able to form functional NR2E3 dimers and atypical mild forms of ESCS with residual rod function.
Second harmonic generation is a process through which nonlinear materials such as collagen can absorb two photons and scatter one with twice the energy. Collagen upconverts 730 nm (near-IR) to 365 nm (UV) through second harmonic generation, which cleaves a molecule bound to collagen via a UV-sensitive linker.
In the study presented by D. S. Kohane and co-workers on page 1159, fluorescein molecules are initially bound to collagen fibers through UV-sensitive bonds. Collagen fibers are exposed to NIR light, which is upconverted to UV light through second harmonic generation. The UV-sensitive bonds absorb the upconverted UV light and undergo an irreversible cleavage releasing the fluorescein molecules.
OBJECTIVES: Novel therapeutics are an important part of ophthalmologists' armamentarium, and the risks and benefits of these therapies must be carefully evaluated. We sought to quantify the characteristics of the pivotal clinical trials supporting the regulatory approval of new ophthalmic drugs and medical devices. DESIGN: Retrospective observational study. SETTING AND DATA SOURCE: Medical review dossiers for new ophthalmic drug and high-risk device approvals released publicly by the US Food and Drug Administration (FDA). MAIN OUTCOME MEASURES: Proportion of pivotal trials with randomisation, masking, active or placebo controls and subgroup analyses; total and median number of trial enrollees; and the number of drugs and devices approved with required postapproval studies. RESULTS: From 2002 to 2012, the FDA approved 11 ophthalmic drugs and 25 devices. The pivotal trials underlying the approvals of ophthalmic drugs in our study cohort enrolled a median of 809 patients. Virtually all drug trials were randomised and masked (91%), of which 7 (70%) used a placebo control. Pivotal trials for ophthalmic devices enrolled 324 patients on average, and significantly fewer trials for ophthalmic devices versus drugs were randomised (16% vs 91%; p<0.001) or masked (12% vs 91%; p<0.001). 8 (32%) ophthalmic devices and 6 (55%) ophthalmic drugs were approved with required postapproval studies. CONCLUSIONS: Ophthalmic therapeutics were approved based on varying levels of evidence. Postapproval studies could be used to confirm or refute early indications of safety and effectiveness of these therapeutics, with the study results accessible to patients and clinicians who need to make informed treatment decisions.
PURPOSE/AIMS: To assess the effect of storage temperature on the viability, phenotype, metabolism, and morphology of cultured human oral keratinocytes (HOK). MATERIALS AND METHODS: Cultured HOK cells were stored in HEPES- and sodium bicarbonate-buffered Minimum Essential Medium (MEM) at nine temperatures in approximately 4°C increments from 4°C to 37°C for seven days. Cells were characterized for viability by calcein fluorescence, phenotype retention by immunocytochemistry, metabolic parameters (pH, glucose, lactate, and O2) within the storage medium by blood gas analysis, and morphology by scanning electron microscopy and light microscopy. RESULTS: Relative to the cultured, but non-stored control cells, a high percentage of viable cells were retained only in the 12°C and 16°C storage groups (85%±13% and 68%±10%, respectively). Expression of ABCG2, Bmi1, C/EBPδ, PCNA, cytokeratin 18, and caspase-3 were preserved after storage in the 5 groups between 4°C and 20°C, compared to the non-stored control. Glucose, pH and pO2 in the storage medium declined, whereas lactate increased with increasing storage temperature. Morphology was best preserved following storage of the three groups between 12°C, 16°C, and 20°C. CONCLUSION: We conclude that storage temperatures of 12°C and 16°C were optimal for maintenance of cell viability, phenotype, and morphology of cultured HOK. The storage method described in the present study may be applicable for other cell types and tissues; thus its significance may extend beyond HOK and the field of ophthalmology.
PURPOSE: Amino-amide or amino-ester local anesthetics, which are currently used for topical ocular anesthesia, are short acting and may delay corneal healing with long-term use. In contrast, site 1 sodium channel blockers (S1SCBs) are potent local anesthetics with minimal adverse tissue reaction. In this study, we examined topical local anesthesia with two S1SCBs, tetrodotoxin (TTX) or saxitoxin (STX) individually or in combination with α2-adrenergic receptor agonists (dexmedetomidine or clonidine), and compared them with the amino-ester ocular anesthetic proparacaine. The effect of test solutions on corneal healing was also studied. METHODS: Solutions of TTX ± dexmedetomidine, TTX ± clonidine, STX ± dexmedetomidine, dexmedetomidine, or proparacaine were applied to the rat cornea. Tactile sensitivity was measured by recording the blink response to probing of the cornea with a Cochet-Bonnet esthesiometer. The duration of corneal anesthesia was calculated. Cytotoxicity from anesthetic solutions was measured in vitro. The effect on corneal healing was measured in vivo after corneal debridement followed by repeated drug administration. RESULTS: Addition of dexmedetomidine to TTX or STX significantly prolonged corneal anesthesia beyond that of either drug alone, whereas clonidine did not. Tetrodotoxin or STX coadministered with dexmedetomidine resulted in two to three times longer corneal anesthesia than did proparacaine. S1SCB-dexmedetomidine formulations were not cytotoxic. Corneal healing was not delayed significantly by any of the test solutions. CONCLUSIONS: Coadministration of S1SCBs with dexmedetomidine provided prolonged corneal anesthesia without delaying corneal wound healing. Such formulations may be useful for the management of acute surgical and nonsurgical corneal pain.
Tissue effector cells of the monocyte lineage can differentiate into different cell types with specific cell function depending on their environment. The phenotype, developmental requirements, and functional mechanisms of immune protective macrophages that mediate the induction of transplantation tolerance remain elusive. Here, we demonstrate that costimulatory blockade favored accumulation of DC-SIGN-expressing macrophages that inhibited CD8(+) T cell immunity and promoted CD4(+)Foxp3(+) Treg cell expansion in numbers. Mechanistically, that simultaneous DC-SIGN engagement by fucosylated ligands and TLR4 signaling was required for production of immunoregulatory IL-10 associated with prolonged allograft survival. Deletion of DC-SIGN-expressing macrophages in vivo, interfering with their CSF1-dependent development, or preventing the DC-SIGN signaling pathway abrogated tolerance. Together, the results provide new insights into the tolerogenic effects of costimulatory blockade and identify DC-SIGN(+) suppressive macrophages as crucial mediators of immunological tolerance with the concomitant therapeutic implications in the clinic.
PURPOSE: To examine the relationship between proportion of African ancestry (PAA) and proliferative diabetic retinopathy (PDR) and to identify genetic loci associated with PDR using admixture mapping in African Americans with type 2 diabetes (T2D). METHODS: Between 1993 and 2013, 1440 participants enrolled in four different studies had fundus photographs graded using the Early Treatment Diabetic Retinopathy Study scale. Cases (n = 305) had PDR while controls (n = 1135) had nonproliferative diabetic retinopathy (DR) or no DR. Covariates included diabetes duration, hemoglobin A1C, systolic blood pressure, income, and education. Genotyping was performed on the Affymetrix platform. The association between PAA and PDR was evaluated using logistic regression. Genome-wide admixture scanning was performed using ANCESTRYMAP software. RESULTS: In the univariate analysis, PDR was associated with increased PAA (odds ratio [OR] = 1.36, 95% confidence interval [CI] = 1.16-1.59, P = 0.0002). In multivariate regression adjusting for traditional DR risk factors, income and education, the association between PAA and PDR was attenuated and no longer significant (OR = 1.21, 95% CI = 0.59-2.47, P = 0.61). For the admixture analyses, the maximum genome-wide score was 1.44 on chromosome 1. CONCLUSIONS: In this largest study of PDR in African Americans with T2D to date, an association between PAA and PDR is not present after adjustment for clinical, demographic, and socioeconomic factors. No genome-wide significant locus (defined as having a locus-genome statistic > 5) was identified with admixture analysis. Further analyses with even larger sample sizes are needed to definitively assess if any admixture signal for DR is present.
PURPOSE: To identify the factors responsible for the poor validity of the most common aniseikonia tests, which involve size comparisons of red-green stimuli presented haploscopically. METHODS: Aniseikonia was induced by afocal size lenses placed before one eye. Observers compared the sizes of semicircles presented haploscopically via color filters. The main factor under study was viewing mode (free viewing versus short presentations under central fixation). To eliminate response bias, a three-response format allowed observers to respond if the left, the right, or neither semicircle appeared larger than the other. To control decisional (criterion) bias, measurements were taken with the lens-magnified stimulus placed on the left and on the right. To control for size-color illusions, measurements were made with color filters in both arrangements before the eyes and under binocular vision (without color filters). RESULTS: Free viewing resulted in a systematic underestimation of lens-induced aniseikonia that was absent with short presentations. Significant size-color illusions and decisional biases were found that would be mistaken for aniseikonia unless appropriate action is taken. CONCLUSIONS: To improve their validity, aniseikonia tests should use short presentations and include control conditions to prevent contamination from decisional/response biases. If anaglyphs are used, presence of size-color illusions must be checked for. TRANSLATIONAL RELEVANCE: We identified optimal conditions for administration of aniseikonia tests and appropriate action for differential diagnosis of aniseikonia in the presence of response biases or size-color illusions. Our study has clinical implications for aniseikonia management.
PURPOSE: Epiretinal fibrovascular membranes (FVMs) are a hallmark of proliferative diabetic retinopathy (PDR). Surgical removal of FVMs is often indicated to treat tractional retinal detachment. This potentially informative pathological tissue is usually disposed of after surgery without further examination. We developed a method for isolating and characterizing cells derived from FVMs and correlated their expression of specific markers in culture with that in tissue. METHODS: FVMs were obtained from 11 patients with PDR during diabetic vitrectomy surgery and were analyzed with electron microscopy (EM), comparative genomic hybridization (CGH), immunohistochemistry, and/or digested with collagenase II for cell isolation and culture. Antibody arrays and enzyme-linked immunosorbent assay (ELISA) were used to profile secreted angiogenesis-related proteins in cell culture supernatants. RESULTS: EM analysis of the FVMs showed abnormal vessels composed of endothelial cells with large nuclei and plasma membrane infoldings, loosely attached perivascular cells, and stromal cells. The cellular constituents of the FVMs lacked major chromosomal aberrations as shown with CGH. Cells derived from FVMs (C-FVMs) could be isolated and maintained in culture. The C-FVMs retained the expression of markers of cell identity in primary culture, which define specific cell populations including CD31-positive, alpha-smooth muscle actin-positive (SMA), and glial fibrillary acidic protein-positive (GFAP) cells. In primary culture, secretion of angiopoietin-1 and thrombospondin-1 was significantly decreased in culture conditions that resemble a diabetic environment in SMA-positive C-FVMs compared to human retinal pericytes derived from a non-diabetic donor. CONCLUSIONS: C-FVMs obtained from individuals with PDR can be isolated, cultured, and profiled in vitro and may constitute a unique resource for the discovery of cell signaling mechanisms underlying PDR that extends beyond current animal and cell culture models.
PURPOSE: Although the impact of homonymous visual field defects (HFDs) on mobility has been investigated previously, the emphasis has been on obstacle detection. Relatively little is known about HFD patients' ability to judge collisions once an obstacle is detected. We investigated this using a walking simulator. METHODS: Patients with HFDs (n = 29) and subjects with normal vision (NV; n = 21) were seated in front of a large screen on which a visual simulation of walking was displayed. They made collision judgments for a human figure that appeared for 1 second at lateral offsets from the virtual walking path. A perceived-collision threshold was calculated for right and left sides. RESULTS: Symmetrical collision thresholds (same on left and right sides) were measured for participants with NV (n = 21), and right (n = 9) and left (n = 7) HFD without hemispatial neglect. Participants with left neglect (n = 10) showed significant asymmetry with thresholds smaller (compared to the NV group and other HFD groups) on the blind (P < 0.001) and larger on the seeing (P = 0.05) sides. Despite the asymmetry, the overall width of the zone of perceived collision risk was not different, suggesting a relatively uniform rightward deviation in judgments of the left neglect group. CONCLUSIONS: Left neglect was associated with rightward asymmetry in collision judgments, which may cause collisions on the left side even when an obstacle is detected. These behaviors may represent the spatial misperceptions in body midline described previously in patients with left neglect.
Multidrug-resistant Enterococcus faecalis possess numerous mobile elements that encode virulence and antibiotic resistance traits as well as new metabolic pathways, often constituting over one-quarter of the genome. It was of interest to determine how this large accretion of mobile elements affects competitive growth in the gastrointestinal (GI) tract consortium. We unexpectedly observed that the prototype clinical isolate strain V583 was actively killed by GI tract flora, whereas commensal enterococci flourished. It was found that killing of V583 resulted from lethal cross-talk between accumulated mobile elements and that this cross-talk was induced by a heptapeptide pheromone produced by native E. faecalis present in the fecal consortium. These results highlight two important aspects of the evolution of multidrug-resistant enterococci: (i) the accretion of mobile elements in E. faecalis V583 renders it incompatible with commensal strains, and (ii) because of this incompatibility, multidrug-resistant strains sharing features found in V583 cannot coexist with commensal strains. The accumulation of mobile elements in hospital isolates of enterococci can include those that are inherently incompatible with native flora, highlighting the importance of maintaining commensal populations as means of preventing colonization and subsequent infection by multidrug-resistant strains.
PURPOSE: To report the prevalence and risk factors for retinopathy in African Americans with impaired fasting glucose (IFG) and type 2 diabetes in the Jackson Heart Study and to determine if P-selectin plasma levels are independently associated with retinopathy in this population. DESIGN: Prospective, cross-sectional observational study. METHODS: setting: Community-based epidemiologic study. STUDY POPULATION: Total of 629 patients with type 2 diabetes and 266 participants with impaired fasting glucose. OBSERVATION PROCEDURES: Bilateral, 7-field fundus photographs were scored by masked readers for diabetic retinopathy (DR) level. Covariate data including P-selectin plasma levels and genotypes were collected in a standardized fashion. MAIN OUTCOME MEASURES: Association between risk factors, including P-selectin plasma levels and genotypes, and retinopathy. RESULTS: The prevalences of any retinopathy among participants with IFG and type 2 diabetes were 9.4% and 32.4%, respectively. Among those with type 2 diabetes, in multivariate models adjusted for age, sex, and other traditional risk factors, higher P-selectin levels were associated with any DR (odds ratio = 1.11, 95% confidence interval = 1.02-1.21, P = .02) and proliferative DR (odds ratio = 1.23, 95% confidence interval = 1.03-1.46, P = .02). To further investigate the relationship between P-selectin and DR, we examined the association between P-selectin genotype and DR. Minor allele homozygotes for the variant rs6128 were less likely to develop DR (P after Bonferroni correction = 0.03). CONCLUSIONS: Both serologic and genetic data show an association between P-selectin and DR in the Jackson Heart Study. If confirmed in other studies, this association may provide insight into the pathogenesis of retinopathy.
PURPOSE: To evaluate corneal endothelial cell density (ECD) in patients with dry eye disease (DED) compared to an age-matched control group. DESIGN: Cross-sectional, controlled study. METHODS: This study included 90 eyes of 45 patients with moderate to severe DED (aged 53.7 ± 9.8 years) and 30 eyes of 15 normal controls (aged 50.7 ± 9.8 years). All subjects had a complete ophthalmic evaluation including symptom assessment using the Ocular Surface Disease Index (OSDI) and corneal fluorescein staining. In addition, laser scanning in vivo confocal microscopy was performed to measure the density of the following parameters in the central cornea: endothelial cells, subbasal nerves, and subbasal immune dendritic cells. RESULTS: Corneal ECD was significantly lower in the DED group (2595.8 ± 356.1 cells/mm(2)) than in the control group (2812.7 ± 395.2 cells/mm(2), P = .046). The DED group showed significantly lower corneal subbasal nerve density (17.1 ± 6.9 mm/mm(2)) compared to the control group (24.7 ± 4.4 mm/mm(2), P < .001). Dendritic cell density was significantly higher in the DED group than in the controls (111.7 ± 137.3 vs 32.0 ± 24.4 cells/mm(2), respectively, P = .002). There were statistically significant correlations between corneal ECD and dry eye severity parameters including the OSDI score (rs = -0.26, P = .03), and corneal fluorescein staining (rs = -0.28, P = .008). CONCLUSIONS: There is a significant reduction in corneal ECD in DED that correlates with clinical severity of the disease.
BACKGROUND/AIMS: To evaluate ex vivo biomechanical and enzymatic digestion resistance differences between standard myopic laser in-situ keratomileusis (LASIK) compared with LASIK+CXL, in which high-irradiance cross-linking (CXL) is added. METHODS: Eight human donor corneas were subjected to femtosecond-assisted myopic LASIK. Group A (n=4) served as a control group (no CXL). The corneas in LASIK+CXL group B were subjected to concurrent prophylactic high-irradiance CXL (n=4). Saline-diluted (0.10%) riboflavin was instilled on the stroma, subsequently irradiated with UV-A through the repositioned flap. The cornea stroma and flap specimens were separately subjected to transverse biaxial resistance measurements; biomechanical differences were assessed via stress and Young's shear modulus. Subsequently, the specimens were subjected to enzymatic degradation. RESULTS: For the corneal stroma specimen, stress at 10% strain was 128±11 kPa for control group A versus 293±20 kPa for the LASIK+CXL group B (relative difference Δ=+129%, p<0.05). The stress in group B was also increased at 20% strain by +68% (p<0.05). Shear modulus in group B was increased at 10% strain by +79%, and at 20% strain by +48% (both statistically significant, p<0.05). The enzymatic degradation time to dissolution was 157.5±15.0 min in group A versus 186.25±7.5 min in group B (Δ=+18%, p=0.014). For the flaps, both biomechanical, as well as enzymatic degradation tests showed no significant differences. CONCLUSIONS: LASIK+CXL appears to provide significant increase in underlying corneal stromal rigidity, up to +130%. Additionally, there is significant relevant enzymatic digestion resistance confirmatory to the above. LASIK flaps appear unaffected biomechanically by the LASIK+CXL procedure, suggesting effective CXL just under the flap.
PURPOSE: Corneal wound healing is a highly regulated process that requires the proliferation and migration of epithelial cells and interactions between epithelial cells and stromal fibroblasts. Compounds that can be applied topically to the ocular surface and that have the capability of activating corneal epithelial cells to proliferate and/or migrate would be useful to promote corneal wound healing. We hypothesize that human growth hormone (HGH) will activate signal transducers and activators of transcription-5 (STAT5) signaling and promote corneal wound healing by enhancing corneal epithelial cell and fibroblast proliferation and/or migration in vitro. The purpose of this study was to test these hypotheses. METHODS: We studied cell signaling, proliferation, and migration using an immortalized human corneal epithelial cell line and primary human corneal fibroblasts in vitro. We also examined whether insulin-like growth factor-1 (IGF-1), a hormone known to mediate many of HGH's growth promoting actions, may play a role in this effect. RESULTS: We show that HGH activates STAT5 signaling and promotes corneal epithelial cell migration in vitro. The migratory effect requires an intact communication between corneal epithelia and fibroblasts and is not mediated by IGF-1. CONCLUSIONS: HGH may represent a topical therapeutic to promote corneal epithelial wound healing. This warrants further investigation.
BACKGROUND: This study sought to correlate the clinical features of patients with giant cell arteritis (GCA) who present with ophthalmic symptoms and signs, with 2 specific histopathological findings-the presence of giant cells and arterial wall neoangiogenesis. The goal was to assess if these pathological features might be useful in guiding the approach to patient management. METHODS: Medical charts were retrospectively reviewed from 58 patients who underwent a temporal artery biopsy at a single institution. Detailed information was collected about the clinical presentation and course, with an emphasis on visual function. Histopathological and immunohistochemical techniques were used to examine temporal artery biopsies for evidence of inflammation. Correlations were made between the clinical data and the presence of giant cells and neoangiogenesis. RESULTS: Twenty-one (34%) biopsies were positive for inflammation consistent with GCA. Although the percentage of positive biopsies with giant cells was high, neither the presence of giant cells nor neoangiogenesis was predictive of a patient's presenting visual symptoms, severity and bilaterality of vision loss, other ophthalmic manifestations of GCA, presence of headache or jaw claudication, or erythrocyte sedimentation rate. Giant cells were more common in patients with recent weight loss. Immunohistochemistry confirmed diagnoses but did not alter the clinical course or treatment plan. CONCLUSIONS: There was no correlation between the clinical, specifically visual, features of GCA and the presence or absence of giant cells or neoangiogenesis in temporal artery biopsy specimens. Although the presence of neoangiogenesis may be important in the pathogenesis of GCA, our study showed no correlation between this finding and the clinical course.
PURPOSE: To analyze the density and morphology of corneal epithelial cells and keratocytes by in vivo confocal microscopy (IVCM) in patients with herpes zoster ophthalmicus (HZO) as associated with corneal innervation. DESIGN: Prospective, controlled and masked cross-sectional study. METHODS: setting: Single-center study. PATIENTS: Thirty eyes with the diagnosis HZO and their contralateral clinically unaffected eyes, 15 eyes of 15 normal controls. intervention procedures: In vivo confocal microscopy and corneal esthesiometry of the central cornea. MAIN OUTCOME MEASURES: Changes in morphology and density of the superficial and basal epithelial cells and stromal keratocytes, and correlation with corneal sensation. RESULTS: The density of superficial epithelial cells in HZO eyes with severe sensation loss (766.5 ± 25.2 cells/mm(2)) was significantly lower than both healthy control eyes (1450.23 ± 150.83 cells/mm(2)) and contralateral unaffected eyes (1974.13 ± 298.24 cells/mm(2)) (P = .003). Superficial epithelial cell size (1162.5 μm(2)) was significantly larger in HZO eyes with severe loss of sensation, as compared to contralateral (441.46 ± 298.14) or healthy eyes (407.4 ± 47.2μm(2); all P < .05). The density of basal epithelial cells, anterior keratocytes, and posterior keratocytes did not show statistical significance between patients, controls, and contralateral unaffected eyes. Changes in superficial epithelial cell density and morphology correlated strongly with corneal sensation. CONCLUSIONS: In vivo confocal microscopy reveals profound HZO-induced changes in the superficial epithelium, as demonstrated by increase in cell size, decrease in cell density, and squamous metaplasia. We demonstrate that these changes strongly correlate with changes in corneal innervation in eyes affected by HZO.
PURPOSE: The purpose of this study was to evaluate the outcomes of phacoemulsification in patients with ocular graft-versus-host disease (GVHD). METHODS: The occurrence of cataracts, cataract surgery, and its outcomes were analyzed in the medical records of 229 patients (458 eyes) with ocular GVHD. Outcome measures included pre- and postoperative corrected distance visual acuity (CDVA) and the rate of postoperative complications. RESULTS: Of the 458 eyes evaluated, 58 were pseudophakic; from the 400 phakic eyes, 238 (59 %) presented with cataracts and 62 (26 %) underwent cataract surgery. Analysis of postoperative complications and visual outcomes at 1 month was performed in 51 eyes in which detailed surgical and immediate postoperative records were available. Preoperatively, the mean CDVA was 0.67 ± 0.57 LogMAR (Snellen 20/93), improving postoperatively to 0.17 ± 0.18 (Snellen 20/29) at 1 month (P < 0.0001), and to 0.13 ± 0.14 (Snellen 20/26) by the final follow-up visit (P < 0.0001). Postoperative complications included corneal epithelial defects (8 %), filamentary keratitis (6 %), worsening of corneal epitheliopathy (16 %), posterior capsular opacification (18 %), and cystoid macular edema (4 %). A corrected distance visual acuity of 20/30 or better was achieved in 87 % of the eyes; suboptimal CDVA improvement was attributable to severe ocular surface disease, pre-existing advanced glaucoma, and prior macular surgery. CONCLUSIONS: Phacoemulsification in patients with chronic ocular GVHD is a safe and efficacious procedure resulting in significant visual improvement. Overall, postoperative adverse events responded well to timely management.
PURPOSE: To evaluate the efficacy of combination pars plana vitrectomy, endoscopic peripheral panretinal photocoagulation, and endocyclophotocoagulation (ECP) as compared with standard care in patients with neovascular glaucoma. METHODS: This age-matched case-controlled retrospective series of 54 eyes compared the clinical outcomes between a consecutive series of combination pars plana vitrectomy/panretinal photocoagulation/ECP (n = 27) versus the current standard of care (n = 27) for patients with neovascular glaucoma. "Standard" treatments for patients with neovascular glaucoma include panretinal photocoagulation, intravitreal bevacizumab, filtration surgery, pars plana vitrectomy, and Ahmed valve placement. RESULTS: After 1 year, mean intraocular pressure reduced from 40.7 ± 12.40 mmHg preoperatively to 12.3 ± 4.84 mmHg (P < 0.001) in the ECP group and from 34.7 ± 12.38 mmHg to 23.2 ± 12.34 mmHg in the control group (P = 0.002). Compared with controls, the mean drop in intraocular pressure in the ECP group was significantly greater at all postoperative visits. Logarithm of the minimal angle of resolution visual acuity outcomes were similar in both groups. There were 2 cases (7.4%) of postoperative phthisis bulbi in each group. CONCLUSION: Endoscopic pars plana vitrectomy, panretinal photocoagulation, and ECP seem to control intraocular pressure to a greater extent than standard glaucoma treatments in patients with neovascular glaucoma. In this aged-matched comparative case series, there was no significant difference between the two treatments' effects on visual acuity.
BACKGROUND: To investigate possible associations between diabetic retinopathy (DR) and systemic vascular endothelial function and arterial stiffness measured using reactive hyperaemia peripheral arterial tonometry. METHODS: This was a cross-sectional observational clinical study. Subjects with diabetes were recruited and DR was graded from retinal photographs. Systemic endothelial function was measured using reactive hyperaemia peripheral arterial tonometry (EndoPAT) and expressed as the reactive hyperaemia index (RHI). Peripheral arterial stiffness was measured using the same device and expressed as the augmentation index (AI). RESULTS: In total, 164 eyes of 95 Chinese patients were evaluated. The mean age of the subject eyes was 60.1±8.2 years and 76.8% were men. The mean duration of diabetes was 15.5±9.8 years, and the mean HbA1c was 8.1±1.4%. In age-gender-adjusted models, increasing severity of DR was associated with increasing mean RHI (p=0.001) and increasing mean AI (p<0.001). In multivariate models, adjusting additionally for smoking, mean duration of diabetes, HbA1c and hypertension, the associations with RHI and AI persisted (p=0.011 and 0.001, respectively). In analyses of the dichotomous outcomes clinically significant macular oedema (CSME), moderate DR and vision-threatening DR, AI was a significant predictor of CSME and vision-threatening DR. In multivariate-adjusted models, for every SD increase in AI, the odds of having CSME was 1.78 times higher (95% CI 1.05 to 2.99; p=0.029). For every SD increase in AI, the odds of having vision-threatening DR was 1.73 times higher (95% CI 1.17 to 2.56; p=0.003). CONCLUSIONS: Subjects with more severe DR have larger peripheral reactive hyperaemic responses and greater peripheral vascular stiffness. These findings support the link between the microvascular changes of diabetes and macrovascular disease.
