Publications by Year: 2022

2022

Nguyen, Cuong Thach, Hiroki Furuya, Dayasagar Das, Alina I Marusina, Alexander A Merleev, Resmi Ravindran, Zahra Jalali, Imran H Khan, Emanual Maverakis, and Iannis E Adamopoulos. (2022) 2022. “Peripheral γδ T Cells Regulate Neutrophil Expansion and Recruitment in Experimental Psoriatic Arthritis.”. Arthritis & Rheumatology (Hoboken, N.J.) 74 (9): 1524-34. https://doi.org/10.1002/art.42124.

OBJECTIVE: This study was undertaken to identify the mechanistic role of γδ T cells in the pathogenesis of experimental psoriatic arthritis (PsA).

METHODS: In this study, we performed interleukin-23 (IL-23) gene transfer in wild-type (WT) and T cell receptor δ-deficient (TCRδ-/- ) mice and conducted tissue phenotyping in the joint, skin, and nails to characterize the inflammatory infiltrate. We further performed detailed flow cytometry, immunofluorescence staining, RNA sequencing, T cell repertoire analysis, and in vitro T cell polarization assays to identify regulatory mechanisms of γδ T cells.

RESULTS: We demonstrated that γδ T cells support systemic granulopoiesis, which is critical for murine PsA-like pathology. Briefly, γδ T cell ablation inhibited the expression of neutrophil chemokines CXCL1 and CXCL2 and neutrophil CD11b+Ly6G+ accumulation in the aforementioned PsA-related tissues. Although significantly reduced expression of granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-17A was detected systemically in TCRδ-/- mice, no GM-CSF+/IL-17A+ γδ T cells were detected locally in the inflamed skin or bone marrow in WT mice. Our data showed that nonresident γδ T cells regulate the expansion of an CD11b+Ly6G+ neutrophil population and their recruitment to joint and skin tissues, where they develop hallmark pathologic features of human PsA.

CONCLUSION: Our findings do not support the notion that tissue-resident γδ T cells initiate the disease but demonstrate a novel role of γδ T cells in neutrophil regulation that can be exploited therapeutically in PsA patients.

Su, Shi, Xanthi-Lida Katopodi, Yered H Pita-Juárez, Emanual Maverakis, Ioannis S Vlachos, and Iannis E Adamopoulos. (2022) 2022. “Serine and Arginine Rich Splicing Factor 1 Deficiency Alters Pathways Involved in IL-17A Expression and Is Implicated in Human Psoriasis.”. Clinical Immunology (Orlando, Fla.) 240: 109041. https://doi.org/10.1016/j.clim.2022.109041.

Serine and Arginine Rich Splicing Factor 1 (SRSF1) is a splicing factor that binds to exonic enhancers and stimulates splicing and is previously implicated with autoimmunity. Herein, we investigate the role of SRSF1 in regulating innate immune functions that are pertinent in the pathogenesis of auto-inflammatory diseases. Specifically, we show that conditional deletion of SRSF1 in mature lymphocytes resulted in higher expression of il-17a and il-17 f and an expansion of IL17A+ CD8 T cells. Mechanistically, the aberrant expression of IL-17A in SRSF1 cKO mice could not be attributed to alternative splicing of il-17a or il-17 f genes but possibly to defective CD11B+LY6C+ myeloid derived suppressor function in the spleen. Finally, meta-analysis of RNA-Seq collected from psoriasis patients demonstrate a clear correlation between SRSF1 and psoriasis that suggests a putative role of SRSF1 in IL-17A-induced psoriasis.

Merleev, Alexander, Antonio Ji-Xu, Atrin Toussi, Lam C Tsoi, Stephanie T Le, Guillaume Luxardi, Xianying Xing, et al. (2022) 2022. “Proprotein Convertase Subtilisin/Kexin Type 9 Is a Psoriasis-Susceptibility Locus That Is Negatively Related to IL36G.”. JCI Insight 7 (16). https://doi.org/10.1172/jci.insight.141193.

Proprotein convertase subtilisin/kexin type-9 (PCSK9) is a posttranslational regulator of the LDL receptor (LDLR). Recent studies have proposed a role for PCSK9 in regulating immune responses. Using RNA-Seq-based variant discovery, we identified a possible psoriasis-susceptibility locus at 1p32.3, located within PCSK9 (rs662145 C > T). This finding was verified in independently acquired genomic and RNA-Seq data sets. Single-cell RNA-Seq (scRNA-Seq) identified keratinocytes as the primary source of PCSK9 in human skin. PCSK9 expression, however, was not uniform across keratinocyte subpopulations. scRNA-Seq and IHC demonstrated an epidermal gradient of PCSK9, with expression being highest in basal and early spinous layer keratinocytes and lowest in granular layer keratinocytes. IL36G expression followed the opposite pattern, with expression highest in granular layer keratinocytes. PCSK9 siRNA knockdown experiments confirmed this inverse relationship between PCSK9 and IL36G expression. Other immune genes were also linked to PCSK9 expression, including IL27RA, IL1RL1, ISG20, and STX3. In both cultured keratinocytes and nonlesional human skin, homozygosity for PCSK9 SNP rs662145 C > T was associated with lower PCSK9 expression and higher IL36G expression, when compared with heterozygous skin or cell lines. Together, these results support PCSK9 as a psoriasis-susceptibility locus and establish a putative link between PCSK9 and inflammatory cytokine expression.

Merleev, Alexander A, Stephanie T Le, Claire Alexanian, Atrin Toussi, Yixuan Xie, Alina I Marusina, Steven M Watkins, et al. (2022) 2022. “Biogeographic and Disease-Specific Alterations in Epidermal Lipid Composition and Single-Cell Analysis of Acral Keratinocytes.”. JCI Insight 7 (16). https://doi.org/10.1172/jci.insight.159762.

The epidermis is the outermost layer of skin. Here, we used targeted lipid profiling to characterize the biogeographic alterations of human epidermal lipids across 12 anatomically distinct body sites, and we used single-cell RNA-Seq to compare keratinocyte gene expression at acral and nonacral sites. We demonstrate that acral skin has low expression of EOS acyl-ceramides and the genes involved in their synthesis, as well as low expression of genes involved in filaggrin and keratin citrullination (PADI1 and PADI3) and corneodesmosome degradation, changes that are consistent with increased corneocyte retention. Several overarching principles governing epidermal lipid expression were also noted. For example, there was a strong negative correlation between the expression of 18-carbon and 22-carbon sphingoid base ceramides. Disease-specific alterations in epidermal lipid gene expression and their corresponding alterations to the epidermal lipidome were characterized. Lipid biomarkers with diagnostic utility for inflammatory and precancerous conditions were identified, and a 2-analyte diagnostic model of psoriasis was constructed using a step-forward algorithm. Finally, gene coexpression analysis revealed a strong connection between lipid and immune gene expression. This work highlights (a) mechanisms by which the epidermis is uniquely adapted for the specific environmental insults encountered at different body surfaces and (b) how inflammation-associated alterations in gene expression affect the epidermal lipidome.