Publications by Year: 2015

2015

Scott I, Rijsdijk F, Walker J, Quist J, Spain S, Tan R, Steer S, Okada Y, Raychaudhuri S, Cope A, Lewis C. Do Genetic Susceptibility Variants Associate with Disease Severity in Early Active Rheumatoid Arthritis?. J Rheumatol. 2015;42(7):1131–40.
OBJECTIVE: Genetic variants affect both the development and severity of rheumatoid arthritis (RA). Recent studies have expanded the number of RA susceptibility variants. We tested the hypothesis that these associated with disease severity in a clinical trial cohort of patients with early, active RA. METHODS: We evaluated 524 patients with RA enrolled in the Combination Anti-Rheumatic Drugs in Early RA (CARDERA) trials. We tested validated susceptibility variants - 69 single-nucleotide polymorphisms (SNP), 15 HLA-DRB1 alleles, and amino acid polymorphisms in 6 HLA molecule positions - for their associations with progression in Larsen scoring, 28-joint Disease Activity Scores, and Health Assessment Questionnaire (HAQ) scores over 2 years using linear mixed-effects and latent growth curve models. RESULTS: HLA variants were associated with joint destruction. The *04:01 SNP (rs660895, p = 0.0003), *04:01 allele (p = 0.0002), and HLA-DRβ1 amino acids histidine at position 13 (p = 0.0005) and valine at position 11 (p = 0.0012) significantly associated with radiological progression. This association was only significant in anticitrullinated protein antibody (ACPA)-positive patients, suggesting that while their effects were not mediated by ACPA, they only predicted joint damage in ACPA-positive RA. Non-HLA variants did not associate with radiograph damage (assessed individually and cumulatively as a weighted genetic risk score). Two SNP - rs11889341 (STAT4, p = 0.0001) and rs653178 (SH2B3-PTPN11, p = 0.0004) - associated with HAQ scores over 6-24 months. CONCLUSION: HLA susceptibility variants play an important role in determining radiological progression in early, active ACPA-positive RA. Genome-wide and HLA-wide analyses across large populations are required to better characterize the genetic architecture of radiological progression in RA.
Pers T, Karjalainen J, Chan Y, Westra HJ, Wood A, Yang J, Lui J, Vedantam S, Gustafsson S, Esko T, Frayling T, Speliotes E, Consortium GIAT (GIANT), Boehnke M, Raychaudhuri S, Fehrmann R, Hirschhorn J, Franke L. Biological interpretation of genome-wide association studies using predicted gene functions. Nat Commun. 2015;6:5890.
The main challenge for gaining biological insights from genetic associations is identifying which genes and pathways explain the associations. Here we present DEPICT, an integrative tool that employs predicted gene functions to systematically prioritize the most likely causal genes at associated loci, highlight enriched pathways and identify tissues/cell types where genes from associated loci are highly expressed. DEPICT is not limited to genes with established functions and prioritizes relevant gene sets for many phenotypes.
Kim K, Bang SY, Lee HS, Cho SK, Choi CB, Sung YK, Kim TH, Jun JB, Yoo DH, Kang YM, Kim SK, Suh CH, Shim SC, Lee SS, Lee J, Chung WT, Choe JY, Shin HD, Lee JY, Han BG, Nath S, Eyre S, Bowes J, Pappas D, Kremer J, González-Gay M, Rodriguez-Rodriguez L, Ärlestig L, Okada Y, Diogo D, Liao K, Karlson E, Raychaudhuri S, Rantapää-Dahlqvist S, Martin J, Klareskog L, Padyukov L, Gregersen P, Worthington J, Greenberg J, Plenge R, Bae SC. High-density genotyping of immune loci in Koreans and Europeans identifies eight new rheumatoid arthritis risk loci. Ann Rheum Dis. 2015;74(3):e13.
OBJECTIVE: A highly polygenic aetiology and high degree of allele-sharing between ancestries have been well elucidated in genetic studies of rheumatoid arthritis. Recently, the high-density genotyping array Immunochip for immune disease loci identified 14 new rheumatoid arthritis risk loci among individuals of European ancestry. Here, we aimed to identify new rheumatoid arthritis risk loci using Korean-specific Immunochip data. METHODS: We analysed Korean rheumatoid arthritis case-control samples using the Immunochip and genome-wide association studies (GWAS) array to search for new risk alleles of rheumatoid arthritis with anticitrullinated peptide antibodies. To increase power, we performed a meta-analysis of Korean data with previously published European Immunochip and GWAS data for a total sample size of 9299 Korean and 45,790 European case-control samples. RESULTS: We identified eight new rheumatoid arthritis susceptibility loci (TNFSF4, LBH, EOMES, ETS1-FLI1, COG6, RAD51B, UBASH3A and SYNGR1) that passed a genome-wide significance threshold (p<5×10(-8)), with evidence for three independent risk alleles at 1q25/TNFSF4. The risk alleles from the seven new loci except for the TNFSF4 locus (monomorphic in Koreans), together with risk alleles from previously established RA risk loci, exhibited a high correlation of effect sizes between ancestries. Further, we refined the number of single nucleotide polymorphisms (SNPs) that represent potentially causal variants through a trans-ethnic comparison of densely genotyped SNPs. CONCLUSIONS: This study demonstrates the advantage of dense-mapping and trans-ancestral analysis for identification of potentially causal SNPs. In addition, our findings support the importance of T cells in the pathogenesis and the fact of frequent overlap of risk loci among diverse autoimmune diseases.
Diogo D, Bastarache L, Liao K, Graham R, Fulton R, Greenberg J, Eyre S, Bowes J, Cui J, Lee A, Pappas D, Kremer J, Barton A, Coenen MJ, Franke B, Kiemeney L, Mariette X, Richard-Miceli C, Canhao H, Fonseca J, Vries N, Tak P, Crusius B, Nurmohamed M, Kurreeman F, Mikuls T, Okada Y, Stahl E, Larson D, Deluca T, O’Laughlin M, Fronick C, Fulton L, Kosoy R, Ransom M, Bhangale T, Ortmann W, Cagan A, Gainer V, Karlson E, Kohane I, Murphy S, Martin J, Zhernakova A, Klareskog L, Padyukov L, Worthington J, Mardis E, Seldin M, Gregersen P, Behrens T, Raychaudhuri S, Denny J, Plenge R. TYK2 protein-coding variants protect against rheumatoid arthritis and autoimmunity, with no evidence of major pleiotropic effects on non-autoimmune complex traits. PLoS One. 2015;10(4):e0122271.
Despite the success of genome-wide association studies (GWAS) in detecting a large number of loci for complex phenotypes such as rheumatoid arthritis (RA) susceptibility, the lack of information on the causal genes leaves important challenges to interpret GWAS results in the context of the disease biology. Here, we genetically fine-map the RA risk locus at 19p13 to define causal variants, and explore the pleiotropic effects of these same variants in other complex traits. First, we combined Immunochip dense genotyping (n = 23,092 case/control samples), Exomechip genotyping (n = 18,409 case/control samples) and targeted exon-sequencing (n = 2,236 case/controls samples) to demonstrate that three protein-coding variants in TYK2 (tyrosine kinase 2) independently protect against RA: P1104A (rs34536443, OR = 0.66, P = 2.3 x 10(-21)), A928V (rs35018800, OR = 0.53, P = 1.2 x 10(-9)), and I684S (rs12720356, OR = 0.86, P = 4.6 x 10(-7)). Second, we show that the same three TYK2 variants protect against systemic lupus erythematosus (SLE, Pomnibus = 6 x 10(-18)), and provide suggestive evidence that two of the TYK2 variants (P1104A and A928V) may also protect against inflammatory bowel disease (IBD; P(omnibus) = 0.005). Finally, in a phenome-wide association study (PheWAS) assessing >500 phenotypes using electronic medical records (EMR) in >29,000 subjects, we found no convincing evidence for association of P1104A and A928V with complex phenotypes other than autoimmune diseases such as RA, SLE and IBD. Together, our results demonstrate the role of TYK2 in the pathogenesis of RA, SLE and IBD, and provide supporting evidence for TYK2 as a promising drug target for the treatment of autoimmune diseases.
Gutierrez-Achury J, Zhernakova A, Pulit S, Trynka G, Hunt K, Romanos J, Raychaudhuri S, Heel D, Wijmenga C, Bakker P. Fine mapping in the MHC region accounts for 18% additional genetic risk for celiac disease. Nat Genet. 2015;47(6):577–8.
Although dietary gluten is the trigger for celiac disease, risk is strongly influenced by genetic variation in the major histocompatibility complex (MHC) region. We fine mapped the MHC association signal to identify additional risk factors independent of the HLA-DQA1 and HLA-DQB1 alleles and observed five new associations that account for 18% of the genetic risk. Taking these new loci together with the 57 known non-MHC loci, genetic variation can now explain up to 48% of celiac disease heritability.
Sul JH, Raj T, Jong S, Bakker P, Raychaudhuri S, Ophoff R, Stranger B, Eskin E, Han B. Accurate and fast multiple-testing correction in eQTL studies. Am J Hum Genet. 2015;96(6):857–68.
In studies of expression quantitative trait loci (eQTLs), it is of increasing interest to identify eGenes, the genes whose expression levels are associated with variation at a particular genetic variant. Detecting eGenes is important for follow-up analyses and prioritization because genes are the main entities in biological processes. To detect eGenes, one typically focuses on the genetic variant with the minimum p value among all variants in cis with a gene and corrects for multiple testing to obtain a gene-level p value. For performing multiple-testing correction, a permutation test is widely used. Because of growing sample sizes of eQTL studies, however, the permutation test has become a computational bottleneck in eQTL studies. In this paper, we propose an efficient approach for correcting for multiple testing and assess eGene p values by utilizing a multivariate normal distribution. Our approach properly takes into account the linkage-disequilibrium structure among variants, and its time complexity is independent of sample size. By applying our small-sample correction techniques, our method achieves high accuracy in both small and large studies. We have shown that our method consistently produces extremely accurate p values (accuracy > 98%) for three human eQTL datasets with different sample sizes and SNP densities: the Genotype-Tissue Expression pilot dataset, the multi-region brain dataset, and the HapMap 3 dataset.
Kavanagh D, Yu Y, Schramm E, Triebwasser M, Wagner E, Raychaudhuri S, Daly M, Atkinson J, Seddon J. Rare genetic variants in the CFI gene are associated with advanced age-related macular degeneration and commonly result in reduced serum factor I levels. Hum Mol Genet. 2015;24(13):3861–70.
To assess a potential diagnostic and therapeutic biomarker for age-related macular degeneration (AMD), we sequenced the complement factor I gene (CFI) in 2266 individuals with AMD and 1400 without, identifying 231 individuals with rare genetic variants. We evaluated the functional impact by measuring circulating serum factor I (FI) protein levels in individuals with and without rare CFI variants. The burden of very rare (frequency <1/1000) variants in CFI was strongly associated with disease (P = 1.1 × 10(-8)). In addition, we examined eight coding variants with counts ≥5 and saw evidence for association with AMD in three variants. Individuals with advanced AMD carrying a rare CFI variant had lower mean FI compared with non-AMD subjects carrying a variant (P < 0.001). Further new evidence that FI levels drive AMD risk comes from analyses showing individuals with a CFI rare variant and low FI were more likely to have advanced AMD (P = 5.6 × 10(-5)). Controlling for covariates, low FI increased the risk of advanced AMD among those with a variant compared with individuals without advanced AMD with a rare CFI variant (OR 13.6, P = 1.6 × 10(-4)), and also compared with control individuals without a rare CFI variant (OR 19.0, P = 1.1 × 10(-5)). Thus, low FI levels are strongly associated with rare CFI variants and AMD. Enhancing FI activity may be therapeutic and measuring FI provides a screening tool for identifying patients who are most likely to benefit from complement inhibitory therapy.
Hayes J, Trynka G, Vijai J, Offit K, Raychaudhuri S, Klein R. Tissue-Specific Enrichment of Lymphoma Risk Loci in Regulatory Elements. PLoS One. 2015;10(9):e0139360.
Though numerous polymorphisms have been associated with risk of developing lymphoma, how these variants function to promote tumorigenesis is poorly understood. Here, we report that lymphoma risk SNPs, especially in the non-Hodgkin's lymphoma subtype chronic lymphocytic leukemia, are significantly enriched for co-localization with epigenetic marks of active gene regulation. These enrichments were seen in a lymphoid-specific manner for numerous ENCODE datasets, including DNase-hypersensitivity as well as multiple segmentation-defined enhancer regions. Furthermore, we identify putatively functional SNPs that are both in regulatory elements in lymphocytes and are associated with gene expression changes in blood. We developed an algorithm, UES, that uses a Monte Carlo simulation approach to calculate the enrichment of previously identified risk SNPs in various functional elements. This multiscale approach integrating multiple datasets helps disentangle the underlying biology of lymphoma, and more broadly, is generally applicable to GWAS results from other diseases as well.
Kim K, Jiang X, Cui J, Lu B, Costenbader K, Sparks J, Bang SY, Lee HS, Okada Y, Raychaudhuri S, Alfredsson L, Bae SC, Klareskog L, Karlson E. Interactions between amino acid-defined major histocompatibility complex class II variants and smoking in seropositive rheumatoid arthritis. Arthritis Rheumatol. 2015;67(10):2611–23.
OBJECTIVE: To define the interaction between cigarette smoking and HLA polymorphisms in seropositive rheumatoid arthritis (RA), in the context of a recently identified amino acid-based HLA model for RA susceptibility. METHODS: We imputed Immunochip data on HLA amino acids and classical alleles from 3 case-control studies (the Swedish Epidemiological Investigation of Rheumatoid Arthritis [EIRA] study [1,654 cases and 1,934 controls], the Nurses' Health Study [NHS] [229 cases and 360 controls], and the Korean RA Cohort Study [1,390 cases and 735 controls]). We examined the interaction effects of heavy smoking (>10 pack-years) and the genetic risk score (GRS) of multiple RA-associated amino acid positions (positions 11, 13, 71, and 74 in HLA-DRβ1, position 9 in HLA-B, and position 9 in HLA-DPβ1), as well as the interaction effects of heavy smoking and the GRS of HLA-DRβ1 4-amino acid haplotypes (assessed via attributable proportion due to interaction [AP] using the additive interaction model). RESULTS: Heavy smoking and all investigated HLA amino acid positions and haplotypes were associated with RA susceptibility in the 3 populations. In the interaction analysis, we found a significant deviation from the expected additive joint effect between heavy smoking and the HLA-DRβ1 4-amino acid haplotype (AP 0.416, 0.467, and 0.796, in the EIRA, NHS, and Korean studies, respectively). We further identified the key interacting variants as being located at HLA-DRβ1 amino acid positions 11 and 13 but not at any of the other RA risk-associated amino acid positions. For residues in positions 11 and 13, there were similar patterns between RA risk effects and interaction effects. CONCLUSION: Our findings of significant gene-environment interaction effects indicate that a physical interaction between citrullinated autoantigens produced by smoking and HLA-DR molecules is characterized by the HLA-DRβ1 4-amino acid haplotype, primarily by positions 11 and 13.
Won HH, Natarajan P, Dobbyn A, Jordan D, Roussos P, Lage K, Raychaudhuri S, Stahl E, Do R. Disproportionate Contributions of Select Genomic Compartments and Cell Types to Genetic Risk for Coronary Artery Disease. PLoS Genet. 2015;11(10):e1005622.
Large genome-wide association studies (GWAS) have identified many genetic loci associated with risk for myocardial infarction (MI) and coronary artery disease (CAD). Concurrently, efforts such as the National Institutes of Health (NIH) Roadmap Epigenomics Project and the Encyclopedia of DNA Elements (ENCODE) Consortium have provided unprecedented data on functional elements of the human genome. In the present study, we systematically investigate the biological link between genetic variants associated with this complex disease and their impacts on gene function. First, we examined the heritability of MI/CAD according to genomic compartments. We observed that single nucleotide polymorphisms (SNPs) residing within nearby regulatory regions show significant polygenicity and contribute between 59-71% of the heritability for MI/CAD. Second, we showed that the polygenicity and heritability explained by these SNPs are enriched in histone modification marks in specific cell types. Third, we found that a statistically higher number of 45 MI/CAD-associated SNPs that have been identified from large-scale GWAS studies reside within certain functional elements of the genome, particularly in active enhancer and promoter regions. Finally, we observed significant heterogeneity of this signal across cell types, with strong signals observed within adipose nuclei, as well as brain and spleen cell types. These results suggest that the genetic etiology of MI/CAD is largely explained by tissue-specific regulatory perturbation within the human genome.