Publications by Year: 2017
2017
OBJECTIVE:
The pathogenetic mechanisms by which HLA-DRB1 alleles are associated with anticitrullinated peptide antibody (ACPA)-positive rheumatoid arthritis (RA) are incompletely understood. RA high-risk HLA-DRB1 alleles are known to share a common motif, the 'shared susceptibility epitope (SE)'. Here, the electropositive P4 pocket of HLA-DRB1 accommodates self-peptide residues containing citrulline but not arginine. HLA-DRB1 His/Phe13β stratifies with ACPA-positive RA, while His13βSer polymorphisms stratify with ACPA-negative RA and RA protection. Indigenous North American (INA) populations have high risk of early-onset ACPA-positive RA, whereby HLA-DRB1*04:04 and HLA-DRB1*14:02 are implicated as risk factors for RA in INA. However, HLA-DRB1*14:02 has a His13βSer polymorphism. Therefore, we aimed to verify this association and determine its molecular mechanism.
METHODS:
HLA genotype was compared in 344 INA patients with RA and 352 controls. Structures of HLA-DRB1*1402-class II loaded with vimentin-64Arg59-71, vimentin-64Cit59-71 and fibrinogen β-74Cit69-81 were solved using X-ray crystallography. Vimentin-64Cit59-71-specific and vimentin59-71-specific CD4+ T cells were characterised by flow cytometry using peptide-histocompatibility leukocyte antigen (pHLA) tetramers. After sorting of antigen-specific T cells, TCRα and β-chains were analysed using multiplex, nested PCR and sequencing.
RESULTS:
ACPA+ RA in INA was independently associated with HLA-DRB1*14:02. Consequent to the His13βSer polymorphism and altered P4 pocket of HLA-DRB1*14:02, both citrulline and arginine were accommodated in opposite orientations. Oligoclonal autoreactive CD4+ effector T cells reactive with both citrulline and arginine forms of vimentin59-71 were observed in patients with HLA-DRB1*14:02+ RA and at-risk ACPA- first-degree relatives. HLA-DRB1*14:02-vimentin59-71-specific and HLA-DRB1*14:02-vimentin-64Cit59-71-specific CD4+ memory T cells were phenotypically distinct populations.
CONCLUSION:
HLA-DRB1*14:02 broadens the capacity for citrullinated and native self-peptide presentation and T cell expansion, increasing risk of ACPA+ RA.
OBJECTIVES:
Juvenile idiopathic arthritis (JIA) is a heterogeneous group of diseases, comprising seven categories. Genetic data could potentially be used to help redefine JIA categories and improve the current classification system. The human leucocyte antigen (HLA) region is strongly associated with JIA. Fine-mapping of the region was performed to look for similarities and differences in HLA associations between the JIA categories and define correspondences with adult inflammatory arthritides.
METHODS:
Dense genotype data from the HLA region, from the Immunochip array for 5043 JIA cases and 14 390 controls, were used to impute single-nucleotide polymorphisms, HLA classical alleles and amino acids. Bivariate analysis was performed to investigate genetic correlation between the JIA categories. Conditional analysis was used to identify additional effects within the region. Comparison of the findings with those in adult inflammatory arthritic diseases was performed.
RESULTS:
We identified category-specific associations and have demonstrated for the first time that rheumatoid factor (RF)-negative polyarticular JIA and oligoarticular JIA are genetically similar in their HLA associations. We also observe that each JIA category potentially has an adult counterpart. The RF-positive polyarthritis association at HLA-DRB1 amino acid at position 13 mirrors the association in adult seropositive rheumatoid arthritis (RA). Interestingly, the combined oligoarthritis and RF-negative polyarthritis dataset shares the same association with adult seronegative RA.
CONCLUSIONS:
The findings suggest the value of using genetic data in helping to classify the categories of this heterogeneous disease. Mapping JIA categories to adult counterparts could enable shared knowledge of disease pathogenesis and aetiology and facilitate transition from paediatric to adult services.
BACKGROUND:
HLA-DRB1 is the strongest susceptibility gene to rheumatoid arthritis (RA). HLA-DRB1 alleles showed significant non-additive and interactive effects on susceptibility to RA in the European population, but these effects on RA susceptibility should vary between populations due to the difference in allelic distribution. Furthermore, non-additive or interactive effects on the phenotypes of RA are not fully known. We evaluated the non-additive and interactive effects of HLA-DRB1 alleles on RA susceptibility and anticitrullinated protein/peptide antibody (ACPA) levels in Japanese patients.
METHODS:
A total of 5581 ACPA(+) RA and 19 170 controls were genotyped or imputed for HLA-DRB1 alleles. Logistic regression analysis was performed for both allelic non-additive effects and interactive effects of allelic combinations. The significant levels were set by Bonferroni's correction. A total of 4371 ACPA(+) RA were analysed for ACPA levels.
RESULTS:
We obtained evidence of non-additive and interactive effects of HLA-DRB1 on ACPA(+) RA susceptibility (p=2.5×10-5 and 1.5×10-17, respectively). Multiple HLA-DRB1 alleles including HLA-DRB1*04:05, the most common susceptibility allele in the Japanese, showed significant non-additive effects (p≤0.0043). We identified multiple allelic combinations with significant interactive effects including a common combination with the European population as well as novel combinations. Additional variance of ACPA(+) RA susceptibility could be explained substantially by heterozygote dominance or interactive effects. We did not find evidence of non-additive and interactive effects on levels of ACPA.
CONCLUSION:
HLA allelic non-additive and interactive effects on ACPA(+) RA susceptibility were observed in the Japanese population. The allelic non-additive and interactive effects depend on allelic distribution in populations.