Publications

2022

Nathan A, Asgari S, Ishigaki K, Valencia C, Amariuta T, Luo Y, Beynor J, Baglaenko Y, Suliman S, Price A, Lecca L, Murray M, Moody B, Raychaudhuri S. Single-cell eQTL models reveal dynamic T cell state dependence of disease loci. Nature. 2022;606(7912):120–128.
Non-coding genetic variants may cause disease by modulating gene expression. However, identifying these expression quantitative trait loci (eQTLs) is complicated by differences in gene regulation across fluid functional cell states within cell types. These states-for example, neurotransmitter-driven programs in astrocytes or perivascular fibroblast differentiation-are obscured in eQTL studies that aggregate cells1,2. Here we modelled eQTLs at single-cell resolution in one complex cell type: memory T cells. Using more than 500,000 unstimulated memory T cells from 259 Peruvian individuals, we show that around one-third of 6,511 cis-eQTLs had effects that were mediated by continuous multimodally defined cell states, such as cytotoxicity and regulatory capacity. In some loci, independent eQTL variants had opposing cell-state relationships. Autoimmune variants were enriched in cell-state-dependent eQTLs, including risk variants for rheumatoid arthritis near ORMDL3 and CTLA4; this indicates that cell-state context is crucial to understanding potential eQTL pathogenicity. Moreover, continuous cell states explained more variation in eQTLs than did conventional discrete categories, such as CD4+ versus CD8+, suggesting that modelling eQTLs and cell states at single-cell resolution can expand insight into gene regulation in functionally heterogeneous cell types.
Korsunsky I, Wei K, Pohin M, Kim E, Barone F, Major T, Taylor E, Ravindran R, Kemble S, Watts G, Jonsson H, Jeong Y, Athar H, Windell D, Kang J, Friedrich M, Turner J, Nayar S, Fisher B, Raza K, Marshall J, Croft A, Tamura T, Sholl L, Vivero M, Rosas I, Bowman S, Coles M, Frei A, Lassen K, Filer A, Powrie F, Buckley C, Brenner M, Raychaudhuri S. Cross-tissue, single-cell stromal atlas identifies shared pathological fibroblast phenotypes in four chronic inflammatory diseases. Med (N Y). 2022;3(7):481–518.e14.
BACKGROUND: Pro-inflammatory fibroblasts are critical for pathogenesis in rheumatoid arthritis, inflammatory bowel disease, interstitial lung disease, and Sjögren's syndrome and represent a novel therapeutic target for chronic inflammatory disease. However, the heterogeneity of fibroblast phenotypes, exacerbated by the lack of a common cross-tissue taxonomy, has limited our understanding of which pathways are shared by multiple diseases. METHODS: We profiled fibroblasts derived from inflamed and non-inflamed synovium, intestine, lungs, and salivary glands from affected individuals with single-cell RNA sequencing. We integrated all fibroblasts into a multi-tissue atlas to characterize shared and tissue-specific phenotypes. FINDINGS: Two shared clusters, CXCL10+CCL19+ immune-interacting and SPARC+COL3A1+ vascular-interacting fibroblasts, were expanded in all inflamed tissues and mapped to dermal analogs in a public atopic dermatitis atlas. We confirmed these human pro-inflammatory fibroblasts in animal models of lung, joint, and intestinal inflammation. CONCLUSIONS: This work represents a thorough investigation into fibroblasts across organ systems, individual donors, and disease states that reveals shared pathogenic activation states across four chronic inflammatory diseases. FUNDING: Grant from F. Hoffmann-La Roche (Roche) AG.
Asgari S, Luo Y, Huang CC, Zhang Z, Calderon R, Jimenez J, Yataco R, Contreras C, Galea J, Lecca L, Jones D, Moody B, Murray M, Raychaudhuri S. Higher native Peruvian genetic ancestry proportion is associated with tuberculosis progression risk. Cell Genom. 2022;2(7).
We investigated whether ancestry-specific genetic factors affect tuberculosis (TB) progression risk in a cohort of admixed Peruvians. We genotyped 2,105 patients with TB and 1,320 household contacts (HHCs) who were infected with Mycobacterium tuberculosis (M. tb) but did not develop TB and inferred each individual's proportion of native Peruvian genetic ancestry. Our HHC study design and our data on potential confounders allowed us to demonstrate increased risk independent of socioeconomic factors. A 10% increase in individual-level native Peruvian genetic ancestry proportion corresponded to a 25% increased TB progression risk. This corresponds to a 3-fold increased risk for individuals in the highest decile of native Peruvian genetic ancestry versus the lowest decile, making native Peruvian genetic ancestry comparable in effect to clinical factors such as diabetes. Our results suggest that genetic ancestry is a major contributor to TB progression risk and highlight the value of including diverse populations in host genetic studies.
Deakin C, Bowes J, Rider L, Miller F, Pachman L, Sanner H, Rouster-Stevens K, Mamyrova G, Curiel R, Feldman B, Huber A, Reed A, Schmeling H, Cook C, Marshall L, Wilkinson ML, Eyre S, Raychaudhuri S, Wedderburn L, Juvenile Dermatomyositis Cohort and Biomarker Study MG the Childhood Myositis Heterogeneity Study Group. Association with HLA-DRβ1 position 37 distinguishes juvenile dermatomyositis from adult-onset myositis. Human Molecular Genetics. 2022;31(14):2471–2481.

 

Juvenile dermatomyositis (JDM) is a rare, severe autoimmune disease and the most common idiopathic inflammatory myopathy of children. JDM and adult-onset dermatomyositis (DM) have similar clinical, biological and serological features, although these features differ in prevalence between childhood-onset and adult-onset disease, suggesting that age of disease onset may influence pathogenesis. Therefore, a JDM-focused genetic analysis was performed using the largest collection of JDM samples to date. Caucasian JDM samples (n = 952) obtained via international collaboration were genotyped using the Illumina HumanCoreExome chip. Additional non-assayed human leukocyte antigen (HLA) loci and genome-wide single-nucleotide polymorphisms (SNPs) were imputed. HLA-DRB1*03:01 was confirmed as the classical HLA allele most strongly associated with JDM [odds ratio (OR) 1.66; 95% confidence interval (CI) 1.46, 1.89; P = 1.4 × 10-14], with an independent association at HLA-C*02:02 (OR = 1.74; 95% CI 1.42, 2.13, P = 7.13 × 10-8). Analyses of amino acid positions within HLA-DRB1 indicated that the strongest association was at position 37 (omnibus P = 3.3 × 10-19), with suggestive evidence this association was independent of position 74 (omnibus P = 5.1 × 10-5), the position most strongly associated with adult-onset DM. Conditional analyses also suggested that the association at position 37 of HLA-DRB1 was independent of some alleles of the Caucasian HLA 8.1 ancestral haplotype (AH8.1) such as HLA-DQB1*02:01 (OR = 1.62; 95% CI 1.36, 1.93; P = 8.70 × 10-8), but not HLA-DRB1*03:01 (OR = 1.49; 95% CR 1.24, 1.80; P = 2.24 × 10-5). No associations outside the HLA region were identified. Our findings confirm previous associations with AH8.1 and HLA-DRB1*03:01, HLA-C*02:02 and identify a novel association with amino acid position 37 within HLA-DRB1, which may distinguish JDM from adult DM.

2021

Zhang, Mears, Shakib, Beynor, Shanaj, Korsunsky, Nathan, Consortium A, Donlin, Raychaudhuri. IFN-γ and TNF-α drive a CXCL10+ CCL2+ macrophage phenotype expanded in severe COVID-19 lungs and inflammatory diseases with tissue inflammation. Genome Med. 2021;13(1):64.

Background: Immunosuppressive and anti-cytokine treatment may have a protective effect for patients with COVID-19. Understanding the immune cell states shared between COVID-19 and other inflammatory diseases with established therapies may help nominate immunomodulatory therapies.

Methods: To identify cellular phenotypes that may be shared across tissues affected by disparate inflammatory diseases, we developed a meta-analysis and integration pipeline that models and removes the effects of technology, tissue of origin, and donor that confound cell-type identification. Using this approach, we integrated > 300,000 single-cell transcriptomic profiles from COVID-19-affected lungs and tissues from healthy subjects and patients with five inflammatory diseases: rheumatoid arthritis (RA), Crohn's disease (CD), ulcerative colitis (UC), systemic lupus erythematosus (SLE), and interstitial lung disease. We tested the association of shared immune states with severe/inflamed status compared to healthy control using mixed-effects modeling. To define environmental factors within these tissues that shape shared macrophage phenotypes, we stimulated human blood-derived macrophages with defined combinations of inflammatory factors, emphasizing in particular antiviral interferons IFN-beta (IFN-β) and IFN-gamma (IFN-γ), and pro-inflammatory cytokines such as TNF.

Results: We built an immune cell reference consisting of > 300,000 single-cell profiles from 125 healthy or disease-affected donors from COVID-19 and five inflammatory diseases. We observed a CXCL10+ CCL2+ inflammatory macrophage state that is shared and strikingly abundant in severe COVID-19 bronchoalveolar lavage samples, inflamed RA synovium, inflamed CD ileum, and UC colon. These cells exhibited a distinct arrangement of pro-inflammatory and interferon response genes, including elevated levels of CXCL10, CXCL9, CCL2, CCL3, GBP1, STAT1, and IL1B. Further, we found this macrophage phenotype is induced upon co-stimulation by IFN-γ and TNF-α.

Conclusions: Our integrative analysis identified immune cell states shared across inflamed tissues affected by inflammatory diseases and COVID-19. Our study supports a key role for IFN-γ together with TNF-α in driving an abundant inflammatory macrophage phenotype in severe COVID-19-affected lungs, as well as inflamed RA synovium, CD ileum, and UC colon, which may be targeted by existing immunomodulatory therapies.

Keywords: COVID-19; Inflammatory diseases; Macrophage heterogeneity; Macrophage stimulation; Single-cell multi-disease tissue integration; Single-cell transcriptomics.

Nathan, Beynor J, Baglaenko, Suliman, Ishigaki, Asgari, Huang C, Luo, Zhang, Lopez, Lindestam Arlehamn C, Ernst J, Jimenez, Calderon R, Lecca, Van Rhijin, Moody D, Murray M, Raychaudhuri. Multimodally profiling memory T cells from a tuberculosis cohort identifies cell state associations with demographics, environment and disease. Nat Immunol. 2021;22(6):781–793.
Multimodal T cell profiling can enable more precise characterization of elusive cell states underlying disease. Here, we integrated single-cell RNA and surface protein data from 500,089 memory T cells to define 31 cell states from 259 individuals in a Peruvian tuberculosis (TB) progression cohort. At immune steady state >4 years after infection and disease resolution, we found that, after accounting for significant effects of age, sex, season and genetic ancestry on T cell composition, a polyfunctional type 17 helper T (TH17) cell-like effector state was reduced in abundance and function in individuals who previously progressed from Mycobacterium tuberculosis (M.tb) infection to active TB disease. These cells are capable of responding to M.tb peptides. Deconvoluting this state-uniquely identifiable with multimodal analysis-from public data demonstrated that its depletion may precede and persist beyond active disease. Our study demonstrates the power of integrative multimodal single-cell profiling to define cell states relevant to disease and other traits.
Shoop-Worrall S, Hyrich K, Wedderburn L, Thomson W, Geifman N, Baildam E, Barnes M, Beresford M, Carlsson E, Chieng A, Ciurtin C, Cleary G, Davidson J, Dekaj F, Dews SA, Dick A, Diogo GR, Duerr T, Fairlie J, Foster H, Gritzfeld J, Ioannou Y, Jebson B, Kartawinata M, Kent T, Kimonyo A, Lawson-Tovey S, Lin WY, Martin P, McErlane F, Merali F, Morris A, Neale H, Neisen J, Ng S, Ralph E, Ramanan A, Raychaudhuri S, Robinson E, Smith S, Sumner E, Tarasek D, Wallace C, Wanstall Z, Yarwood A. Patient-reported wellbeing and clinical disease measures over time captured by multivariate trajectories of disease activity in individuals with juvenile idiopathic arthritis in the UK: a multicentre prospective longitudinal study. The Lancet Rheumatology. 2021;3(2):e111-e121.
Summary Background Juvenile idiopathic arthritis (JIA) is a heterogeneous disease, the signs and symptoms of which can be summarised with use of composite disease activity measures, including the clinical Juvenile Arthritis Disease Activity Score (cJADAS). However, clusters of children and young people might experience different global patterns in their signs and symptoms of disease, which might run in parallel or diverge over time. We aimed to identify such clusters in the 3 years after a diagnosis of JIA. The identification of these clusters would allow for a greater understanding of disease progression in JIA, including how physician-reported and patient-reported outcomes relate to each other over the JIA disease course. Methods In this multicentre prospective longitudinal study, we included children and young people recruited before Jan 1, 2015, to the Childhood Arthritis Prospective Study (CAPS), a UK multicentre inception cohort. Participants without a cJADAS score were excluded. To assess groups of children and young people with similar disease patterns in active joint count, physician's global assessment, and patient or parental global evaluation, we used latent profile analysis at initial presentation to paediatric rheumatology and multivariate group-based trajectory models for the following 3 years. Optimal models were selected on the basis of a combination of model fit, clinical plausibility, and model parsimony. Finding Between Jan 1, 2001, and Dec 31, 2014, 1423 children and young people with JIA were recruited to CAPS, 239 of whom were excluded, resulting in a final study population of 1184 children and young people. We identified five clusters at baseline and six trajectory groups using longitudinal follow-up data. Disease course was not well predicted from clusters at baseline; however, in both cross-sectional and longitudinal analyses, substantial proportions of children and young people had high patient or parent global scores despite low or improving joint counts and physician global scores. Participants in these groups were older, and a higher proportion of them had enthesitis-related JIA and lower socioeconomic status, compared with those in other groups. Interpretation Almost one in four children and young people with JIA in our study reported persistent, high patient or parent global scores despite having low or improving active joint counts and physician's global scores. Distinct patient subgroups defined by disease manifestation or trajectories of progression could help to better personalise health-care services and treatment plans for individuals with JIA. Funding Medical Research Council, Versus Arthritis, Great Ormond Street Hospital Children's Charity, Olivia's Vision, and National Institute for Health Research.
Khan A, Shang N, Petukhova L, Zhang J, Shen Y, Hebbring SJ, Moncrieffe H, Kottyan LC, Namjou-Khales B, Knevel R, Raychaudhuri S, Karlson EW, Harley JB, Stanaway IB, Crosslin D, Denny JC, Elkind MS, Gharavi AG, Hripcsak G, Weng C, Kiryluk K. Medical Records-Based Genetic Studies of the Complement System. Journal of the American Society of Nephrology. American Society of Nephrology; 2021;32(8):2031–2047.
The complement pathway represents one of the critical arms of the innate immune system. We combined genome-wide and phenome-wide association studies using medical records data for C3 and C4 levels to discover common genetic variants controlling systemic complement activation. Three genome-wide significant loci had large effects on complement levels. These loci encode three critical complement genes: CFH, C3, and C4. We performed detailed functional annotations of the significant loci, including multiallelic copy number variant analysis of the C4 locus to define two structural genomic variants with large effects on C4 levels. Blood C4 levels were strongly correlated with the copy number of C4A and C4B genes. Lastly, using genome-wide genetic correlations and electronic health records–based phenome-wide association studies in 102,138 participants, we catalogued a spectrum of human diseases genetically related to systemic complement activation, including inflammatory, autoimmune, cardiometabolic, and kidney diseases.Background Genetic variants in complement genes have been associated with a wide range of human disease states, but well-powered genetic association studies of complement activation have not been performed in large multiethnic cohorts.Methods We performed medical records–based genome-wide and phenome-wide association studies for plasma C3 and C4 levels among participants of the Electronic Medical Records and Genomics (eMERGE) network.Results In a GWAS for C3 levels in 3949 individuals, we detected two genome-wide significant loci: chr.1q31.3 (CFH locus; rs3753396-A; β=0.20; 95% CI, 0.14 to 0.25; P=1.52x10-11) and chr.19p13.3 (C3 locus; rs11569470-G; β=0.19; 95% CI, 0.13 to 0.24; P=1.29x10-8). These two loci explained approximately 2% of variance in C3 levels. GWAS for C4 levels involved 3998 individuals and revealed a genome-wide significant locus at chr.6p21.32 (C4 locus; rs3135353-C; β=0.40; 95% CI, 0.34 to 0.45; P=4.58x10-35). This locus explained approximately 13% of variance in C4 levels. The multiallelic copy number variant analysis defined two structural genomic C4 variants with large effect on blood C4 levels: C4-BS (β=-0.36; 95% CI, -0.42 to -0.30; P=2.98x10-22) and C4-AL-BS (β=0.25; 95% CI, 0.21 to 0.29; P=8.11x10-23). Overall, C4 levels were strongly correlated with copy numbers of C4A and C4B genes. In comprehensive phenome-wide association studies involving 102,138 eMERGE participants, we cataloged a full spectrum of autoimmune, cardiometabolic, and kidney diseases genetically related to systemic complement activation.Conclusions We discovered genetic determinants of plasma C3 and C4 levels using eMERGE genomic data linked to electronic medical records. Genetic variants regulating C3 and C4 levels have large effects and multiple clinical correlations across the spectrum of complement-related diseases in humans.
Shi, Gazal, Kanai, Koch, Schoech, Siewert, Kim, Luo, Amariuta, Huang, Okada, Raychaudhuri, Sunyaev S, Price A. Population-specific causal disease effect sizes in functionally important regions impacted by selection. Nat Commun. 2021;12(1):1098.
Many diseases exhibit population-specific causal effect sizes with trans-ethnic genetic correlations significantly less than 1, limiting trans-ethnic polygenic risk prediction. We develop a new method, S-LDXR, for stratifying squared trans-ethnic genetic correlation across genomic annotations, and apply S-LDXR to genome-wide summary statistics for 31 diseases and complex traits in East Asians (average N = 90K) and Europeans (average N = 267K) with an average trans-ethnic genetic correlation of 0.85. We determine that squared trans-ethnic genetic correlation is 0.82× (s.e. 0.01) depleted in the top quintile of background selection statistic, implying more population-specific causal effect sizes. Accordingly, causal effect sizes are more population-specific in functionally important regions, including conserved and regulatory regions. In regions surrounding specifically expressed genes, causal effect sizes are most population-specific for skin and immune genes, and least population-specific for brain genes. Our results could potentially be explained by stronger gene-environment interaction at loci impacted by selection, particularly positive selection.
Cook, Choi, Lim, Luo, Kim, Jia, Raychaudhuri, Han. Accurate imputation of human leukocyte antigens with CookHLA. Nat Commun. 2021;12(1):1264.
The recent development of imputation methods enabled the prediction of human leukocyte antigen (HLA) alleles from intergenic SNP data, allowing studies to fine-map HLA for immune phenotypes. Here we report an accurate HLA imputation method, CookHLA, which has superior imputation accuracy compared to previous methods. CookHLA differs from other approaches in that it locally embeds prediction markers into highly polymorphic exons to account for exonic variability, and in that it adaptively learns the genetic map within MHC from the data to facilitate imputation. Our benchmarking with real datasets shows that our method achieves high imputation accuracy in a wide range of scenarios, including situations where the reference panel is small or ethnically unmatched.