Publications by Year: 2017

2017

Wang J, Heng Y, Eliassen H, Tamimi R, Hazra A, Carey V, Ambrosone C, Andrade V, Brufsky A, Couch F, et al. Alcohol consumption and breast tumor gene expression. Breast Cancer Res. 2017;19(1):108. doi:10.1186/s13058-017-0901-y
BACKGROUND: Alcohol consumption is an established risk factor for breast cancer and the association generally appears stronger among estrogen receptor (ER)-positive tumors. However, the biological mechanisms underlying this association are not completely understood. METHODS: We analyzed messenger RNA (mRNA) microarray data from both invasive breast tumors (N = 602) and tumor-adjacent normal tissues (N = 508) from participants diagnosed with breast cancer in the Nurses' Health Study (NHS) and NHSII. Multivariable linear regression, controlling for other known breast cancer risk factors, was used to identify differentially expressed genes by pre-diagnostic alcohol intake. For pathway analysis, we performed gene set enrichment analysis (GSEA). Differentially expressed genes or enriched pathway-defined gene sets with false discovery rate (FDR) 0.1 identified in tumors were validated in RNA sequencing data of invasive breast tumors (N = 166) from The Cancer Genome Atlas. RESULTS: No individual genes were significantly differentially expressed by alcohol consumption in the NHS/NHSII. However, GSEA identified 33 and 68 pathway-defined gene sets at FDR 0.1 among 471 ER+ and 127 ER- tumors, respectively, all of which were validated. Among ER+ tumors, consuming 10+ grams of alcohol per day (vs. 0) was associated with upregulation in RNA metabolism and transport, cell cycle regulation, and DNA repair, and downregulation in lipid metabolism. Among ER- tumors, in addition to upregulation in RNA processing and cell cycle, alcohol intake was linked to overexpression of genes involved in cytokine signaling, including interferon and transforming growth factor (TGF)-β signaling pathways, and translation and post-translational modifications. Lower lipid metabolism was observed in both ER+ tumors and ER+ tumor-adjacent normal samples. Most of the significantly enriched gene sets identified in ER- tumors showed a similar enrichment pattern among ER- tumor-adjacent normal tissues. CONCLUSIONS: Our data suggest that moderate alcohol consumption (i.e. 10+ grams/day, equivalent to one or more drinks/day) is associated with several specific and reproducible biological processes and pathways, which adds potential new insight into alcohol-related breast carcinogenesis.
Heng Y, Lester S, Tse G, Factor R, Allison K, Collins L, Chen Y-Y, Jensen K, Johnson N, Jeong JC, et al. The molecular basis of breast cancer pathological phenotypes. J Pathol. 2017;241(3):375–391. doi:10.1002/path.4847
The histopathological evaluation of morphological features in breast tumours provides prognostic information to guide therapy. Adjunct molecular analyses provide further diagnostic, prognostic and predictive information. However, there is limited knowledge of the molecular basis of morphological phenotypes in invasive breast cancer. This study integrated genomic, transcriptomic and protein data to provide a comprehensive molecular profiling of morphological features in breast cancer. Fifteen pathologists assessed 850 invasive breast cancer cases from The Cancer Genome Atlas (TCGA). Morphological features were significantly associated with genomic alteration, DNA methylation subtype, PAM50 and microRNA subtypes, proliferation scores, gene expression and/or reverse-phase protein assay subtype. Marked nuclear pleomorphism, necrosis, inflammation and a high mitotic count were associated with the basal-like subtype, and had a similar molecular basis. Omics-based signatures were constructed to predict morphological features. The association of morphology transcriptome signatures with overall survival in oestrogen receptor (ER)-positive and ER-negative breast cancer was first assessed by use of the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset; signatures that remained prognostic in the METABRIC multivariate analysis were further evaluated in five additional datasets. The transcriptomic signature of poorly differentiated epithelial tubules was prognostic in ER-positive breast cancer. No signature was prognostic in ER-negative breast cancer. This study provided new insights into the molecular basis of breast cancer morphological phenotypes. The integration of morphological with molecular data has the potential to refine breast cancer classification, predict response to therapy, enhance our understanding of breast cancer biology, and improve clinical management. This work is publicly accessible at www.dx.ai/tcga_breast. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Campbell P, Rebbeck T, Nishihara R, Beck A, Begg C, Bogdanov A, Cao Y, Coleman H, Freeman G, Heng Y, et al. Proceedings of the third international molecular pathological epidemiology (MPE) meeting. Cancer Causes Control. 2017;28(2):167–176. doi:10.1007/s10552-016-0845-z
Molecular pathological epidemiology (MPE) is a transdisciplinary and relatively new scientific discipline that integrates theory, methods, and resources from epidemiology, pathology, biostatistics, bioinformatics, and computational biology. The underlying objective of MPE research is to better understand the etiology and progression of complex and heterogeneous human diseases with the goal of informing prevention and treatment efforts in population health and clinical medicine. Although MPE research has been commonly applied to investigating breast, lung, and colorectal cancers, its methodology can be used to study most diseases. Recent successes in MPE studies include: (1) the development of new statistical methods to address etiologic heterogeneity; (2) the enhancement of causal inference; (3) the identification of previously unknown exposure-subtype disease associations; and (4) better understanding of the role of lifestyle/behavioral factors on modifying prognosis according to disease subtype. Central challenges to MPE include the relative lack of transdisciplinary experts, educational programs, and forums to discuss issues related to the advancement of the field. To address these challenges, highlight recent successes in the field, and identify new opportunities, a series of MPE meetings have been held at the Dana-Farber Cancer Institute in Boston, MA. Herein, we share the proceedings of the Third International MPE Meeting, held in May 2016 and attended by 150 scientists from 17 countries. Special topics included integration of MPE with immunology and health disparity research. This meeting series will continue to provide an impetus to foster further transdisciplinary integration of divergent scientific fields.