Jurkunas, Jakobiec, Shin, Zakka, Michaud, Jethva. Reversible corneal epitheliopathy caused by vitamin B12 and folate deficiency in a vegan with a genetic mutation: a new disease. Eye (Lond). 2011;25(11):1512–4. doi:10.1038/eye.2011.177
Publications
2011
Cruzat A, Witkin D, Baniasadi N, Zheng L, Ciolino J, Jurkunas U, Chodosh J, Pavan-Langston D, Dana R, Hamrah P. Inflammation and the nervous system: the connection in the cornea in patients with infectious keratitis. Invest Ophthalmol Vis Sci. 2011;52(8):5136–43. doi:10.1167/iovs.10-7048
PURPOSE: To study the density and morphologic characteristics of epithelial dendritic cells, as correlated to subbasal corneal nerve alterations in acute infectious keratitis (IK) by in vivo confocal microscopy (IVCM).
METHODS: IVCM of the central cornea was performed prospectively in 53 eyes with acute bacterial (n = 23), fungal (n = 13), and Acanthamoeba (n = 17) keratitis, and in 20 normal eyes, by using laser in vivo confocal microscopy. Density and morphology of dendritic-shaped cells (DCs) of the central cornea, corneal nerve density, nerve numbers, branching, and tortuosity were assessed and correlated. It should be noted that due to the "in vivo" nature of the study, the exact identity of these DCs cannot be specified, as they could be monocytes or tissue macrophages, but most likely dendritic cells.
RESULTS: IVCM revealed the presence of central corneal DCs in all patients and controls. The mean DC density was significantly higher in patients with bacterial (441.1 ± 320.5 cells/mm(2); P 0.0001), fungal (608.9 ± 812.5 cells/mm(2); P 0.0001), and Acanthamoeba keratitis (1000.2 ± 1090.3 cells/mm(2); P 0.0001) compared with controls (49.3 ± 39.6 cells/mm(2)). DCs had an increased size and dendrites in patients with IK. Corneal nerves were significantly reduced in eyes with IK compared with controls across all subgroups, including nerve density (674.2 ± 976.1 vs. 3913.9 ± 507.4 μm/frame), total nerve numbers (2.7 ± 3.9 vs. 20.2 ± 3.3), main trunks (1.5 ± 2.2 vs. 6.9 ± 1.1), and branching (1.2 ± 2.0 vs. 13.5 ± 3.1; P 0.0001). A strong association between the diminishment of corneal nerves and the increase of DC density was observed (r = -0.44; P 0.0005).
CONCLUSIONS: IVCM reveals an increased density and morphologic changes of central epithelial DCs in infectious keratitis. There is a strong and significant correlation between the increase in DC numbers and the decreased subbasal corneal nerves, suggesting a potential interaction between the immune and nervous system in the cornea.
Azizi B, Ziaei A, Fuchsluger T, Schmedt T, Chen Y, Jurkunas U. p53-regulated increase in oxidative-stress--induced apoptosis in Fuchs endothelial corneal dystrophy: a native tissue model. Invest Ophthalmol Vis Sci. 2011;52(13):9291–7. doi:10.1167/iovs.11-8312
PURPOSE: This study compared susceptibility of Fuchs endothelial corneal dystrophy (FECD) and normal corneal endothelial cells (CECs) to oxidative stress, and studied the mechanism of oxidative-stress-induced apoptosis in FECD-affected endothelium.
METHODS: For in vitro studies, immortalized normal and FECD human corneal endothelial cell lines (HCECi and FECDi, respectively) were exposed to tert-butyl hydroperoxide (tBHP). Apoptotic cell populations were distinguished using flow cytometry. Reactive oxygen species production was measured by a horseradish peroxidase assay. For ex vivo studies, CECs were exposed to tBHP. Oxidative DNA damage and apoptosis were assessed by anti-8-hydroxydeoxyguanosine antibody and TUNEL assay, respectively. p53 and phospho-p53 levels were assessed by Western blot and immunohistochemistry.
RESULTS: Flow cytometry revealed a higher rate of apoptosis in FECDi than that in HCECi after exposure to 0.5 mM (P=0.010) and 1.0 mM tBHP (P=0.041). Further analysis showed increased production of H2O2 by FECDi than that by HCECi. Oxidative DNA damage increased in both normal and FECD CECs after exposure to 0.5 mM tBHP (P=0.031 and 0.022, respectively), leading to a 21% increase in TUNEL-positive CECs in FECD (P=0.015) but no change in normal. Baseline p53 expression was twofold higher in FECD than that in normal endothelium (P=0.002). Immunofluorescence revealed an increase in p53 and phospho-p53 levels in FECD compared with that in normal endothelium.
CONCLUSIONS: FECD CECs are more susceptible to oxidative DNA damage and oxidative-stress-induced apoptosis than normal. Increased activation of p53 in FECD suggests that it mediates cell death in susceptible CECs. The authors conclude that p53 plays a critical role in complex mechanisms regulating oxidative-stress-induced apoptosis in FECD.
2010
Mandell K, Jurkunas U, Pineda R. Intraocular lens calculations after corneal refractive surgery. Int Ophthalmol Clin. 2010;50(1):181–9. doi:10.1097/IIO.0b013e3181c5542f
Ahmad S, Osei-Bempong C, Dana R, Jurkunas U. The culture and transplantation of human limbal stem cells. J Cell Physiol. 2010;225(1):15–9. doi:10.1002/jcp.22251
The cornea is the clear front of the eye and its surface is composed of an epithelium. This is renewed by stem cells located at the limbus, which encircles the periphery of the cornea. These limbal stem cells become lost or deficient in the blinding disease of limbal stem cell deficiency. In this review article, we discuss the historical perspective in managing limbal stem cell deficiency as well as describing the more contemporary treatment options, and in particular the culture and transplantation of human limbal stem cells. This treatment was first proposed 13 years ago and many case series have been presented to date showing promising outcomes of this technique. However, challenges still remain in treating the debilitating disease of limbal stem cell deficiency. Here we discuss some of the questions, which remain to be answered in this field.
Jurkunas U, Bitar M, Funaki T, Azizi B. Evidence of oxidative stress in the pathogenesis of fuchs endothelial corneal dystrophy. Am J Pathol. 2010;177(5):2278–89. doi:10.2353/ajpath.2010.100279
Fuchs endothelial corneal dystrophy (FECD) is a progressive, blinding disease characterized by corneal endothelial (CE) cell apoptosis. Corneal transplantation is the only measure currently available to restore vision in these patients. Despite the identification of some genetic factors, the pathophysiology of FECD remains unclear. In this study, we observed a decrease in the antioxidant response element-driven antioxidants in FECD corneal endothelium. We further demonstrated that nuclear factor erythroid 2-related factor 2, a transcription factor known to bind the antioxidant response element and activate antioxidant defense, is down-regulated in FECD endothelium. Importantly, we detected significantly higher levels of oxidative DNA damage and apoptosis in FECD endothelium compared with normal controls and pseudophakic bullous keratopathy (iatrogenic CE cell loss) specimens. A marker of oxidative DNA damage, 8-hydroxy-2'-deoxyguanosine, colocalized to mitochondria, indicating that the mitochondrial genome is the specific target of oxidative stress in FECD. Oxidative DNA damage was not detected in pseudophakic bullous keratopathy corneas, whereas it colocalized with terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive cells in FECD samples. Ex vivo, oxidative stress caused characteristic morphological changes and apoptosis of CE, suggestive of findings that characterize FECD in vivo. Together, these data suggest that suboptimal nuclear factor erythroid 2-related factor 2-regulated defenses may account for oxidant-antioxidant imbalance in FECD, which in turn leads to oxidative DNA damage and apoptosis. This study provides evidence that oxidative stress plays a key role in FECD pathogenesis.
Lam H, Wiggs J, Jurkunas U. Unusual presentation of presumed posterior polymorphous dystrophy associated with iris heterochromia, band keratopathy, and keratoconus. Cornea. 2010;29(10):1180–5. doi:10.1097/ICO.0b013e3181d007e1
PURPOSE: To report an unusual presentation of posterior polymorphous corneal dystrophy (PPCD) associated with band keratopathy, iridocorneal adhesions, heterochromia, keratoconus, and confocal microscopic findings suggestive of iridocorneal endothelial syndrome.
METHODS: Confocal microscopy, corneal topography, electroretinography, and genetic analysis were performed in the proband and his siblings.
RESULTS: A 23-year-old man presented with decreased vision in both eyes over 9 months. Examination revealed bilateral alterations in corneal endothelial mosaic with corneal edema and beaten metal appearance in the right eye and cystoid endothelial opacities in the left eye. Marked heterochromia, band keratopathy, and broad peripheral anterior synechiae were present in both eyes. Topographic features of keratoconus were noted. Electroretinography did not detect abnormal retinal function, as has been described with PPCD associated with VSX1 mutations. Diagnosis of PPCD was postulated on the basis of the examination of 3 of proband's brothers by confocal microscopy. Genetic analysis of 3 known PPCD genes, VSX1, COL8A2, and TCF8, did not detect any mutations.
CONCLUSIONS: In severe cases, PPCD can resemble iridocorneal endothelial syndromes in both clinical appearance and imaging studies (confocal microscopy). There was a strong genetic phenotypic penetrance in the family, which was essential in the diagnostic decision making. A yet undetermined genotype is contributing to this unusual PPCD phenotype.
Elhalis H, Azizi B, Jurkunas U. Fuchs endothelial corneal dystrophy. Ocul Surf. 2010;8(4):173–84.
Fuchs endothelial corneal dystrophy (FECD) is characterized by progressive loss of corneal endothelial cells, thickening of Descement's membrane and deposition of extracellular matrix in the form of guttae. When the number of endothelial cells becomes critically low, the cornea swells and causes loss of vision. The clinical course of FECD usually spans 10-20 years. Corneal transplantation is currently the only modality used to restore vision. Over the last several decades genetic studies have detected several genes, as well as areas of chromosomal loci associated with the disease. Proteomic studies have given rise to several hypotheses regarding the pathogenesis of FECD. This review expands upon the recent findings from proteomic and genetic studies and builds upon recent advances in understanding the causes of this common corneal disorder.
2009
Jurkunas U, Bitar M, Rawe I. Colocalization of increased transforming growth factor-beta-induced protein (TGFBIp) and Clusterin in Fuchs endothelial corneal dystrophy. Invest Ophthalmol Vis Sci. 2009;50(3):1129–36. doi:10.1167/iovs.08-2525
PURPOSE: To investigate the differential expression of TGFBIp in normal human and Fuchs endothelial corneal dystrophy (FECD) endothelial cell-Descemet's membrane (HCEC-DM) complex, and to asses the structural role of TGFBIp and clusterin (CLU) in guttae formation.
METHODS: HCEC-DM complex was dissected from stroma in normal and FECD samples. Proteins were separated by 2-D gel electrophoresis and subjected to proteomic analysis. N-terminal processing of TGFBIp was detected by Western blot analysis with two separate antibodies against the N- and C-terminal regions of TGFBIp. Expression of TGFBI mRNA was compared by using real-time PCR. Subcellular localization of TGFBIp and CLU in corneal guttae was assessed by fluorescence confocal microscopy.
RESULTS: A major 68-kDa fragment and a minor 39-kDa fragment of TGFBIp were identified on 2-D gels. Western blot analysis revealed an age-dependent proteolytic processing of the TGFBIp N terminus resulting in the increased formation of 57-kDa (P = 0.04) and 39-kDa (P = 0.03) fragments in older donors. FECD HCEC-DM showed a significant increase in the 68-kDa (P = 0.04), 57-kDa (P = 0.01), and 39- kDa (P = 0.03) fragments of TGFBIp. Real-time PCR analysis revealed that TGFBI mRNA was significantly increased (P = 0.04) in FECD samples. TGFBIp formed aggregates at the lower portions of guttae, next to Descemet's membrane, whereas CLU localized mostly on top of the TGFBIp-stained areas at the level of the endothelial cell nuclear plane.
CONCLUSIONS: The overexpression of proaggregative protein CLU, and proadhesive protein TGFBIp, have been colocalized in the guttae. Such findings provide us with a better understanding of the major contributors involved in the aberrant cell-extracellular matrix interactions seen in the guttae of patients with FECD.
Lim P, Fuchsluger T, Jurkunas U. Limbal stem cell deficiency and corneal neovascularization. Semin Ophthalmol. 2009;24(3):139–48. doi:10.1080/08820530902801478
The corneal limbus harbors corneal epithelial stem cells and contributes to the unique microenvironment of the stem cell niche. Corneal conditions, such as infections, tumors, immunological disorders, trauma, and chemical burns, often lead to the deficiency of the corneal stem cells, and subsequent vision loss. One key feature of limbal stem cell deficiency is corneal neovascularization. There is a delicate balance between pro-angiogenic and anti-angiogenic factors that, in a normal cornea, maintain an avascular state. A pro-angiogenic shift in this balance can occur due to various mechanisms, such as inflammation, gene mutations, physical breach in the limbal barrier, and decreased production of anti-angiogenic molecules. Currently available treatment options for limbal stem cell deficiency include allogeneic and autologous limbal transplants, and more recently, transplantation of alternative sources of epithelium, such as cultivated corneal and oral mucosal stem cells. Further studies are needed to investigate the combination of limbal and stem cell transplantation and concurrent anti-angiogenic therapy.
