Publications

2011

Husain, Fatima, Roberto Medina, Caroline Davis, Yvonne Szymko-Bennett, Kristina Simonyan, Nathan Pajor, and Barry Horwitz. 2011. “Neuroanatomical Changes Due to Hearing Loss and Chronic Tinnitus: A Combined VBM and DTI Study”. Brain Res 1369: 74-88. https://doi.org/10.1016/j.brainres.2010.10.095.
Subjective tinnitus is the perception of sound in the absence of an external source. Tinnitus is often accompanied by hearing loss but not everyone with hearing loss experiences tinnitus. We examined neuroanatomical alterations associated with hearing loss and tinnitus in three groups of subjects: those with hearing loss with tinnitus, those with hearing loss without tinnitus and normal hearing controls without tinnitus. To examine changes in gray matter we used structural MRI scans and voxel-based morphometry (VBM) and to identify changes in white matter tract orientation we used diffusion tensor imaging (DTI). A major finding of our study was that there were both gray and white matter changes in the vicinity of the auditory cortex for subjects with hearing loss alone relative to those with tinnitus and those with normal hearing. We did not find significant changes in gray or white matter in subjects with tinnitus and hearing loss compared to normal hearing controls. VBM analysis revealed that individuals with hearing loss without tinnitus had gray matter decreases in anterior cingulate and superior and medial frontal gyri relative to those with hearing loss and tinnitus. Region-of-interest analysis revealed additional decreases in superior temporal gyrus for the hearing loss group compared to the tinnitus group. Investigating effects of hearing loss alone, we found gray matter decreases in superior and medial frontal gyri in participants with hearing loss compared to normal hearing controls. DTI analysis showed decreases in fractional anisotropy values in the right superior and inferior longitudinal fasciculi, corticospinal tract, inferior fronto-occipital tract, superior occipital fasciculus, and anterior thalamic radiation for the hearing loss group relative to normal hearing controls. In attempting to dissociate the effect of tinnitus from hearing loss, we observed that hearing loss rather than tinnitus had the greatest influence on gray and white matter alterations.
Simonyan, Kristina, and Barry Horwitz. (2011) 2011. “Laryngeal Motor Cortex and Control of Speech in Humans”. Neuroscientist 17 (2): 197-208. https://doi.org/10.1177/1073858410386727.
Speech production is one of the most complex and rapid motor behaviors, and it involves a precise coordination of more than 100 laryngeal, orofacial, and respiratory muscles. Yet we lack a complete understanding of laryngeal motor cortical control during production of speech and other voluntary laryngeal behaviors. In recent years, a number of studies have confirmed the laryngeal motor cortical representation in humans and have provided some information about its interactions with other cortical and subcortical regions that are principally involved in vocal motor control of speech production. In this review, the authors discuss the organization of the peripheral and central laryngeal control based on neuroimaging and electrical stimulation studies in humans and neuroanatomical tracing studies in nonhuman primates. It is hypothesized that the location of the laryngeal motor cortex in the primary motor cortex and its direct connections with the brain stem laryngeal motoneurons in humans, as opposed to its location in the premotor cortex with only indirect connections to the laryngeal motoneurons in nonhuman primates, may represent one of the major evolutionary developments in humans toward the ability to speak and vocalize voluntarily.

2010

Simonyan, Kristina, and Christy Ludlow. (2010) 2010. “Abnormal Activation of the Primary Somatosensory Cortex in Spasmodic Dysphonia: An FMRI Study”. Cereb Cortex 20 (11): 2749-59. https://doi.org/10.1093/cercor/bhq023.
Spasmodic dysphonia (SD) is a task-specific focal dystonia of unknown pathophysiology, characterized by involuntary spasms in the laryngeal muscles during speaking. Our aim was to identify symptom-specific functional brain activation abnormalities in adductor spasmodic dysphonia (ADSD) and abductor spasmodic dysphonia (ABSD). Both SD groups showed increased activation extent in the primary sensorimotor cortex, insula, and superior temporal gyrus during symptomatic and asymptomatic tasks and decreased activation extent in the basal ganglia, thalamus, and cerebellum during asymptomatic tasks. Increased activation intensity in SD patients was found only in the primary somatosensory cortex during symptomatic voice production, which showed a tendency for correlation with ADSD symptoms. Both SD groups had lower correlation of activation intensities between the primary motor and sensory cortices and additional correlations between the basal ganglia, thalamus, and cerebellum during symptomatic and asymptomatic tasks. Compared with ADSD patients, ABSD patients had larger activation extent in the primary sensorimotor cortex and ventral thalamus during symptomatic task and in the inferior temporal cortex and cerebellum during symptomatic and asymptomatic voice production. The primary somatosensory cortex shows consistent abnormalities in activation extent, intensity, correlation with other brain regions, and symptom severity in SD patients and, therefore, may be involved in the pathophysiology of SD.
Simonyan, Kristina, Christy Ludlow, and Alexander Vortmeyer. (2010) 2010. “Brainstem Pathology in Spasmodic Dysphonia”. Laryngoscope 120 (1): 121-4. https://doi.org/10.1002/lary.20677.
Spasmodic dysphonia (SD) is a primary focal dystonia of unknown pathophysiology, characterized by involuntary spasms in the laryngeal muscles during speech production. We examined two rare cases of postmortem brainstem tissue from SD patients compared to four controls. In the SD patients, small clusters of inflammation were found in the reticular formation surrounding solitary tract, spinal trigeminal, and ambigual nuclei, inferior olive, and pyramids. Mild neuronal degeneration and depigmentation were observed in the substantia nigra and locus coeruleus. No abnormal protein accumulations and no demyelination or axonal degeneration were found. These neuropathological findings may provide insights into the pathophysiology of SD.

2009

Simonyan, Kristina, John Ostuni, Christy Ludlow, and Barry Horwitz. 2009. “Functional But Not Structural Networks of the Human Laryngeal Motor Cortex Show Left Hemispheric Lateralization During Syllable But Not Breathing Production”. J Neurosci 29 (47): 14912-23. https://doi.org/10.1523/JNEUROSCI.4897-09.2009.
The laryngeal motor cortex (LMC) is indispensible for the vocal motor control of speech and song production. Patients with bilateral lesions in this region are unable to speak and sing, although their nonverbal vocalizations, such as laughter and cry, are preserved. Despite the importance of the LMC in the control of voluntary voice production in humans, the literature describing its connections remains sparse. We used diffusion tensor probabilistic tractography and functional magnetic resonance imaging-based functional connectivity analysis to identify LMC networks controlling two tasks necessary for speech production: voluntary voice as repetition of two different syllables and voluntary breathing as controlled inspiration and expiration. Peaks of activation during all tasks were found in the bilateral ventral primary motor cortex in close proximity to each other. Functional networks of the LMC during voice production but not during controlled breathing showed significant left-hemispheric lateralization (p < 0.0005). However, structural networks of the LMC associated with both voluntary voice production and controlled breathing had bilateral hemispheric organization. Our findings indicate the presence of a common bilateral structural network of the LMC, upon which different functional networks are built to control various voluntary laryngeal tasks. Bilateral organization of functional LMC networks during controlled breathing supports its indispensible role in all types of laryngeal behaviors. Significant left-hemispheric lateralization of functional networks during simple but highly learned voice production suggests the readiness of the LMC network for production of a complex voluntary behavior, such as human speech.

2008

Lowell, Soren, Christopher Poletto, Bethany Knorr-Chung, Richard Reynolds, Kristina Simonyan, and Christy Ludlow. 2008. “Sensory Stimulation Activates Both Motor and Sensory Components of the Swallowing System”. Neuroimage 42 (1): 285-95. https://doi.org/10.1016/j.neuroimage.2008.04.234.
Volitional swallowing in humans involves the coordination of both brainstem and cerebral swallowing control regions. Peripheral sensory inputs are necessary for safe and efficient swallowing, and their importance to the patterned components of swallowing has been demonstrated. However, the role of sensory inputs to the cerebral system during volitional swallowing is less clear. We used four conditions applied during functional magnetic resonance imaging to differentiate between sensory, motor planning, and motor execution components for cerebral control of swallowing. Oral air pulse stimulation was used to examine the effect of sensory input, covert swallowing was used to engage motor planning for swallowing, and overt swallowing was used to activate the volitional swallowing system. Breath-holding was also included to determine whether its effects could account for the activation seen during overt swallowing. Oral air pulse stimulation, covert swallowing and overt swallowing all produced activation in the primary motor cortex, cingulate cortex, putamen and insula. Additional regions of the swallowing cerebral system that were activated by the oral air pulse stimulation condition included the primary and secondary somatosensory cortex and thalamus. Although air pulse stimulation was on the right side only, bilateral cerebral activation occurred. On the other hand, covert swallowing minimally activated sensory regions, but did activate the supplementary motor area and other motor regions. Breath-holding did not account for the activation during overt swallowing. The effectiveness of oral-sensory stimulation for engaging both sensory and motor components of the cerebral swallowing system demonstrates the importance of sensory input in cerebral swallowing control.
Simonyan, Kristina, Fernanda Tovar-Moll, John Ostuni, Mark Hallett, Victor Kalasinsky, Michael Lewin-Smith, Elisabeth Rushing, Alexander Vortmeyer, and Christy Ludlow. (2008) 2008. “Focal White Matter Changes in Spasmodic Dysphonia: A Combined Diffusion Tensor Imaging and Neuropathological Study”. Brain 131 (Pt 2): 447-59. https://doi.org/10.1093/brain/awm303.
Spasmodic dysphonia is a neurological disorder characterized by involuntary spasms in the laryngeal muscles during speech production. Although the clinical symptoms are well characterized, the pathophysiology of this voice disorder is unknown. We describe here, for the first time to our knowledge, disorder-specific brain abnormalities in these patients as determined by a combined approach of diffusion tensor imaging (DTI) and postmortem histopathology. We used DTI to identify brain changes and to target those brain regions for neuropathological examination. DTI showed right-sided decrease of fractional anisotropy in the genu of the internal capsule and bilateral increase of overall water diffusivity in the white matter along the corticobulbar/corticospinal tract in 20 spasmodic dysphonia patients compared to 20 healthy subjects. In addition, water diffusivity was bilaterally increased in the lentiform nucleus, ventral thalamus and cerebellar white and grey matter in the patients. These brain changes were substantiated with focal histopathological abnormalities presented as a loss of axonal density and myelin content in the right genu of the internal capsule and clusters of mineral depositions, containing calcium, phosphorus and iron, in the parenchyma and vessel walls of the posterior limb of the internal capsule, putamen, globus pallidus and cerebellum in the postmortem brain tissue from one patient compared to three controls. The specificity of these brain abnormalities is confirmed by their localization, limited only to the corticobulbar/corticospinal tract and its main input/output structures. We also found positive correlation between the diffusivity changes and clinical symptoms of spasmodic dysphonia (r = 0.509, P = 0.037). These brain abnormalities may alter the central control of voluntary voice production and, therefore, may underlie the pathophysiology of this disorder.

2007

Simonyan, Kristina, Ziad Saad, Torrey Loucks, Christopher Poletto, and Christy Ludlow. 2007. “Functional Neuroanatomy of Human Voluntary Cough and Sniff Production”. Neuroimage 37 (2): 401-9. https://doi.org/10.1016/j.neuroimage.2007.05.021.
Cough and sniff are both spontaneous respiratory behaviors that can be initiated voluntarily in humans. Disturbances of cough may be life threatening, while inability to sniff impairs the sense of smell in neurological patients. Cortical mechanisms of voluntary cough and sniff production have been predicted to exist; however, the localization and function of supramedullary areas responsible for these behaviors are poorly understood. We used functional magnetic resonance imaging to identify the central control of voluntary cough and sniff compared with breathing. We determined that both voluntary cough and sniff require a widespread pattern of sensorimotor activation along the Sylvian fissure convergent with voluntary breathing. Task-specific activation occurred in a pontomesencephalic region during voluntary coughing and in the hippocampus and piriform cortex during voluntary sniffing. Identification of the localization of cortical activation for cough control in humans may help potential drug development to target these regions in patients with chronic cough. Understanding the sensorimotor sniff control mechanisms may provide a new view on the cerebral functional reorganization of olfactory control in patients with neurological disorders.
Loucks, Torrey, Christopher Poletto, Kristina Simonyan, Catherine Reynolds, and Christy Ludlow. 2007. “Human Brain Activation During Phonation and Exhalation: Common Volitional Control for Two Upper Airway Functions”. Neuroimage 36 (1): 131-43. https://doi.org/10.1016/j.neuroimage.2007.01.049.
Phonation is defined as a laryngeal motor behavior used for speech production, which involves a highly specialized coordination of laryngeal and respiratory neuromuscular control. During speech, brief periods of vocal fold vibration for vowels are interspersed by voiced and unvoiced consonants, glottal stops and glottal fricatives (/h/). It remains unknown whether laryngeal/respiratory coordination of phonation for speech relies on separate neural systems from respiratory control or whether a common system controls both behaviors. To identify the central control system for human phonation, we used event-related fMRI to contrast brain activity during phonation with activity during prolonged exhalation in healthy adults. Both whole-brain analyses and region of interest comparisons were conducted. Production of syllables containing glottal stops and vowels was accompanied by activity in left sensorimotor, bilateral temporoparietal and medial motor areas. Prolonged exhalation similarly involved activity in left sensorimotor and temporoparietal areas but not medial motor areas. Significant differences between phonation and exhalation were found primarily in the bilateral auditory cortices with whole-brain analysis. The ROI analysis similarly indicated task differences in the auditory cortex with differences also detected in the inferolateral motor cortex and dentate nucleus of the cerebellum. A second experiment confirmed that activity in the auditory cortex only occurred during phonation for speech and did not depend upon sound production. Overall, a similar central neural system was identified for both speech phonation and voluntary exhalation that primarily differed in auditory monitoring.

2005

Simonyan, and Jürgens. (2005) 2005. “Afferent Subcortical Connections into the Motor Cortical Larynx Area in the Rhesus Monkey”. Neuroscience 130 (1): 119-31. https://doi.org/10.1016/j.neuroscience.2004.06.071.
In three rhesus monkeys (Macaca mulatta), the inferior motor cortex was explored by electrical stimulation for sites yielding vocal fold adduction. The retrograde tracer wheat germ-agglutinin-conjugated horseradish peroxidase was injected into the effective sites. Within the forebrain, retrogradely labeled cells were found in the claustrum, basal nucleus of Meynert, substantia innominata, extended amygdala, lateral and posterior hypothalamic area, field H of Forel, and a number of thalamic nuclei with the strongest labeling in the nuclei ventralis lateralis, ventralis posteromedialis, including its parvocellular part, medialis dorsalis and centrum medianum, and weaker labeling in the nuclei ventralis anterior, ventralis posterolateralis, intermediodorsalis, paracentralis, parafascicularis and pulvinaris anterior. In the midbrain, labeling was found in the deep mesencephalic nucleus, ventral tegmental area, and substantia nigra. In the lower brainstem, labeled cells were found in the pontine reticular formation, median and dorsal raphe nuclei, medial parabrachial nucleus, and locus coeruleus. The findings are discussed in terms of the possible role of these structures in voluntary vocal control.