Publications by Year: 1995

1995

Taplin, M E, G J Bubley, T D Shuster, M E Frantz, A E Spooner, G K Ogata, H N Keer, and S P Balk. (1995) 1995. “Mutation of the Androgen-Receptor Gene in Metastatic Androgen-Independent Prostate Cancer.”. The New England Journal of Medicine 332 (21): 1393-8.

BACKGROUND: Metastatic prostate cancer is a leading cause of cancer-related death in men. The rate of response to androgen ablation is high, but most patients relapse as a result of the outgrowth of androgen-independent tumor cells. The androgen receptor, which binds testosterone and stimulates the transcription of androgen-responsive genes, regulates the growth of prostate cells. We analyzed the androgen-receptor genes from samples of metastatic androgen-independent prostate cancers to determine whether mutations in the gene have a role in androgen independence.

METHODS: Complementary DNA was synthesized from metastatic prostate cancers in 10 patients with androgen-independent prostate cancer, and the expression of the androgen-receptor gene was estimated by amplification with the polymerase chain reaction. Exons B through H of the gene were cloned, and mutations were identified by DNA sequencing. The functional effects of the mutations were assessed in cells transfected with mutant genes.

RESULTS: All androgen-independent tumors expressed high levels of androgen-receptor gene transcripts, relative to the levels expressed by an androgen-independent prostate-cancer cell line (LNCaP). Point mutations in the androgen-receptor gene were identified in metastatic cells from 5 of the 10 patients examined. One mutation was in the same codon as the mutation found previously in the androgen-independent prostate-cancer cell line. The mutations were not detected in the primary tumors from of the two patients. Functional studies of two of the mutant androgen receptors demonstrated that they could be activated by progesterone and estrogen.

CONCLUSIONS: Most metastatic androgen-independent prostate cancers express high levels of androgen-receptor gene transcripts. Mutations in androgen-receptor genes are not uncommon and may provide a selective growth advantage after androgen ablation.

Blumberg, R S, D Gerdes, A Chott, S A Porcelli, and S P Balk. (1995) 1995. “Structure and Function of the CD1 Family of MHC-Like Cell Surface Proteins.”. Immunological Reviews 147: 5-29.

The CD1 family of proteins are structurally related to MHC class I proteins, but are only distantly related to the class I proteins or other MHC-linked class I-like proteins. Sequence comparisons indicate that the CD1 proteins have evolved into two subfamilies, those which are similar to human CD1a, b, and c and those which are similar to human CD1d. The CD1A-, B-, and C-like genes were deleted from rodents and the CD1D gene was duplicated. CD1a, b, and c are expressed by thymocytes, dendritic cells, activated monocytes, and B cells (CD1c), a tissue distribution which strongly suggests a role in antigen presentation. In contrast, CD1d and its murine homologues are expressed by many cells outside of the lymphoid and myeloid lineages. The CD1 proteins are in most cases expressed as beta 2mg-associated membrane glycoproteins, but may associate with additional proteins. CD1d is expressed on the surface of intestinal epithelial cells in a nonglycosylvated form without beta 2mg. Whether the CD1 proteins function as antigen-presenting molecules is unresolved, but it is unlikely that they present conventional peptide antigens. Strong evidence indicates that murine CD1 proteins are recognized by a population of NK1.1+, CD4+ or CD4-CD8- (double negative, DN) T cells which express an invariant TCR alpha chain. CD1d is most likely recognized by the homologous T cell population in humans. DN alpha beta T cells which recognize CD1a, b, or c have been isolated, including clones which recognize a lipid antigen from mycobacteria presented by CD1b. A third potential population of CD1 reactive cells are CD8+ T cells in the intestinal epithelium. Taken together, these observations indicate that CD1 proteins interact with several specialized populations of T cells. The precise biological functions mediated through these interactions remain to be determined.