Publications

2022

Gordon, William, Keith Boell, Gabriel A Brat, and Sarah L Rudman. 2022. “AI for Enhancing Public Health”. NEJM Catalyst Innovations in Care Delivery 3 (2).
Wang, Xuan, Harrison G Zhang, Xin Xiong, Chuan Hong, Griffin M Weber, Gabriel A Brat, Clara-Lea Bonzel, et al. (2022) 2022. “SurvMaximin: Robust Federated Approach to Transporting Survival Risk Prediction Models.”. Journal of Biomedical Informatics 134: 104176. https://doi.org/10.1016/j.jbi.2022.104176.

OBJECTIVE: For multi-center heterogeneous Real-World Data (RWD) with time-to-event outcomes and high-dimensional features, we propose the SurvMaximin algorithm to estimate Cox model feature coefficients for a target population by borrowing summary information from a set of health care centers without sharing patient-level information.

MATERIALS AND METHODS: For each of the centers from which we want to borrow information to improve the prediction performance for the target population, a penalized Cox model is fitted to estimate feature coefficients for the center. Using estimated feature coefficients and the covariance matrix of the target population, we then obtain a SurvMaximin estimated set of feature coefficients for the target population. The target population can be an entire cohort comprised of all centers, corresponding to federated learning, or a single center, corresponding to transfer learning.

RESULTS: Simulation studies and a real-world international electronic health records application study, with 15 participating health care centers across three countries (France, Germany, and the U.S.), show that the proposed SurvMaximin algorithm achieves comparable or higher accuracy compared with the estimator using only the information of the target site and other existing methods. The SurvMaximin estimator is robust to variations in sample sizes and estimated feature coefficients between centers, which amounts to significantly improved estimates for target sites with fewer observations.

CONCLUSIONS: The SurvMaximin method is well suited for both federated and transfer learning in the high-dimensional survival analysis setting. SurvMaximin only requires a one-time summary information exchange from participating centers. Estimated regression vectors can be very heterogeneous. SurvMaximin provides robust Cox feature coefficient estimates without outcome information in the target population and is privacy-preserving.

Zhou, Doudou, Ziming Gan, Xu Shi, Alina Patwari, Everett Rush, Clara-Lea Bonzel, Vidul A Panickan, et al. (2022) 2022. “Multiview Incomplete Knowledge Graph Integration With Application to Cross-Institutional EHR Data Harmonization.”. Journal of Biomedical Informatics 133: 104147. https://doi.org/10.1016/j.jbi.2022.104147.

OBJECTIVE: The growing availability of electronic health records (EHR) data opens opportunities for integrative analysis of multi-institutional EHR to produce generalizable knowledge. A key barrier to such integrative analyses is the lack of semantic interoperability across different institutions due to coding differences. We propose a Multiview Incomplete Knowledge Graph Integration (MIKGI) algorithm to integrate information from multiple sources with partially overlapping EHR concept codes to enable translations between healthcare systems.

METHODS: The MIKGI algorithm combines knowledge graph information from (i) embeddings trained from the co-occurrence patterns of medical codes within each EHR system and (ii) semantic embeddings of the textual strings of all medical codes obtained from the Self-Aligning Pretrained BERT (SAPBERT) algorithm. Due to the heterogeneity in the coding across healthcare systems, each EHR source provides partial coverage of the available codes. MIKGI synthesizes the incomplete knowledge graphs derived from these multi-source embeddings by minimizing a spherical loss function that combines the pairwise directional similarities of embeddings computed from all available sources. MIKGI outputs harmonized semantic embedding vectors for all EHR codes, which improves the quality of the embeddings and enables direct assessment of both similarity and relatedness between any pair of codes from multiple healthcare systems.

RESULTS: With EHR co-occurrence data from Veteran Affairs (VA) healthcare and Mass General Brigham (MGB), MIKGI algorithm produces high quality embeddings for a variety of downstream tasks including detecting known similar or related entity pairs and mapping VA local codes to the relevant EHR codes used at MGB. Based on the cosine similarity of the MIKGI trained embeddings, the AUC was 0.918 for detecting similar entity pairs and 0.809 for detecting related pairs. For cross-institutional medical code mapping, the top 1 and top 5 accuracy were 91.0% and 97.5% when mapping medication codes at VA to RxNorm medication codes at MGB; 59.1% and 75.8% when mapping VA local laboratory codes to LOINC hierarchy. When trained with 500 labels, the lab code mapping attained top 1 and 5 accuracy at 77.7% and 87.9%. MIKGI also attained best performance in selecting VA local lab codes for desired laboratory tests and COVID-19 related features for COVID EHR studies. Compared to existing methods, MIKGI attained the most robust performance with accuracy the highest or near the highest across all tasks.

CONCLUSIONS: The proposed MIKGI algorithm can effectively integrate incomplete summary data from biomedical text and EHR data to generate harmonized embeddings for EHR codes for knowledge graph modeling and cross-institutional translation of EHR codes.