Abstract
Lymph nodes (LNs) dynamically expand in response to immunization, but the relationship between LN expansion and the accompanying adaptive immune response is unclear. Here, we first characterized the LN response across time and length scales to vaccines of distinct strengths. High-frequency ultrasound revealed that a bolus ‘weak’ vaccine induced a short-lived, 2-fold volume expansion, while a biomaterial-based ‘strong’ vaccine elicited an ∼7-fold LN expansion, which was maintained several weeks after vaccination. This latter expansion was associated with altered matrix and mechanical properties of the LN microarchitecture. Strong vaccination resulted in massive immune and stromal cell engagement, dependent on antigen presence in the vaccine, and conventional dendritic cells and inflammatory monocytes upregulated genes involved in antigen presentation and LN enlargement. The degree of LN expansion following therapeutic cancer vaccination strongly correlated with vaccine efficacy, even 100 days post-vaccination, and direct manipulation of LN expansion demonstrated a causative role in immunization outcomes.