Publications by Year: 2024

2024

D’Oria M, Mastrorilli D, Secemsky E, Behrendt CA, Veraldi G, DeMartino R, Mani K, Budtz-Lilly J, Scali S, Saab F, Calvagna C, Mezzetto L, Ruaro B, Lepidi S. Robustness of Longitudinal Safety and Efficacy After Paclitaxel-Based Endovascular Therapy for Treatment of Femoro-Popliteal Artery Occlusive Disease: An Updated Systematic Review and Meta-Analysis of Randomized Controlled Trials.. Annals of vascular surgery. 2024;101:164–178. PMID: 38154491

BACKGROUND: The aims of this study were: i) to assess fragility indices (FIs) of individual randomized controlled trials (RCTs) that compared paclitaxel-based drug-coated balloons (DCBs) or drug-eluting stents (DESs) versus standard endovascular devices, and ii) to meta-analyze mid-term and long-term safety and efficacy outcomes from available RCT data while also estimating the FI of pooled results.

METHODS: This systematic review has been registered in the PROSPERO public database (CRD42022304326 http://www.crd.york.ac.uk/PROSPERO). A query of PubMed (Medline), EMBASE (Excerpta Medical Database), Scopus, and CENTRAL (Cochrane Central Register of Controlled Trials) databases was performed to identify eligible RCTs. Rates of primary patency (PP) and target lesion revascularization (TLR) were assessed as efficacy outcomes, while lower limb amputation (LLA) consisting of major amputation that is. below or above the knee and all-cause mortality were estimated as safety outcomes. All outcomes were pooled with a random effects model to account for any clinical and study design heterogeneity. The analyses were performed by dividing the RCTs according to their maximal follow-up length (mid-term was defined as results up to 2-3 years, while long-term was defined as results up to 4-5 years). For each individual outcome, the FI and reverse fragility index (RFI) were calculated according to whether the outcome results were statistically significant or not, respectively. The fragility quotient (FQ) and reverse fragility quotient (RFQ), which are the FI or RFI divided by the sample size, were also calculated.

RESULTS: A total of 2,337 patients were included in the systematic review and meta-analysis. There were 2 RCTs examining DES devices and 14 RCTs evaluating different DCBs. For efficacy outcomes, there was evidence that paclitaxel-based endovascular therapy increased the PP rate and reduced the TLR rate at mid-term, with a calculated pooled risk ratio (RR) of 1.66 for patency (95% CI, 1.55-1.86; P < 0.001), with a corresponding number needed-to-treat (NNT) of 3 patients (95% CI, 2.9-3.8) and RR of 0.44 for TLR (95% CI, 0.35-0.54; P = 0.027), respectively. Similarly, there was evidence that paclitaxel-based endovascular therapy both increased PP and decreased TLR rates at long-term, with calculated pooled RR values of 1.73 (95% CI, 1.12-2.61; P = 0.004) and 0.53 (95% CI, 0.45-0.62; P = 0.82), respectively. For safety outcomes, there was evidence that paclitaxel-based endovascular therapy increased all-cause mortality at mid-term, with a calculated pooled RR of 2.05 (95% CI, 1.21-3.24). However, there was no difference between treatment arms in LLA at mid-term (95% CI, 0.1-2.7; P = 0.68). Similarly, neither all-cause mortality nor LLA at long-term differed between treatment arms, with a calculated pooled RR of 0.66, 1.02 (95% CI, 0.31-3.42) and 1.02 (95% CI, 0.30-5.21; P = 0.22), respectively. The pooled estimates of PP at mid-term were robust (FI = 28 and FQ = 1.9%) as were pooled rates of TLR (FI = 18 and FQ = 0.9%). However, when safety outcomes were analyzed, the robustness of the meta-analysis decreased significantly. In fact, the relationship between the use of paclitaxel-coated devices and all-cause mortality at mid-term showed very low robustness (FI = 4 and FQ = 0.2%). At 5 years, only the benefit of paclitaxel-based devices to reduce TLR remained robust, with an FI of 32 and an FQ of 3.1%.

CONCLUSIONS: The data supporting clinical efficacy endpoints of RCTs that examined paclitaxel-based devices in the treatment of femoral-popliteal arterial occlusive disease were robust; however, the pooled safety endpoints were highly fragile and prone to bias due to loss of patient follow-up in the original studies. These findings should be considered in the ongoing debate concerning the safety of paclitaxel-based devices.

Secemsky EA, Kirksey L, Quiroga E, King CM, Martinson M, Hasegawa JT, West NEJ, Wadhera RK. Impact of Intensity of Vascular Care Preceding Major Amputation Among Patients With Chronic Limb-Threatening Ischemia.. Circulation. Cardiovascular interventions. 2024;17(1):e012798. PMID: 38152880

BACKGROUND: Lower-limb amputation rates in patients with chronic limb-threatening ischemia vary across the United States, with marked disparities in amputation rates by gender, race, and income status. We evaluated the association of patient, hospital, and geographic characteristics with the intensity of vascular care received the year before a major lower-limb amputation and how intensity of care associates with outcomes after amputation.

METHODS: Using Medicare claims data (2016-2019), beneficiaries diagnosed with chronic limb-threatening ischemia who underwent a major lower-limb amputation were identified. We examined patient, hospital, and geographic characteristics associated with the intensity of vascular care received the year before amputation. Secondary objectives evaluated all-cause mortality and adverse events following amputation.

RESULTS: Of 33 036 total Medicare beneficiaries undergoing major amputation, 7885 (23.9%) were due to chronic limb-threatening ischemia; of these, 4988 (63.3%) received low-intensity and 2897 (36.7%) received high-intensity vascular care. Mean age, 76.6 years; women, 38.9%; Black adults, 24.5%; and of low income, 35.2%. After multivariable adjustment, those of low income (odds ratio, 0.65 [95% CI, 0.58-0.72]; P<0.001), and to a lesser extent, men (odds ratio, 0.89 [95% CI, 0.81-0.98]; P=0.019), and those who received care at a safety-net hospital (odds ratio, 0.87 [95% CI, 0.78-0.97]; P=0.012) were most likely to receive low intensity of care before amputation. High-intensity care was associated with a lower risk of all-cause mortality 2 years following amputation (hazard ratio, 0.79 [95% CI, 0.74-0.85]; P<0.001).

CONCLUSIONS: Patients who were of low-income status, and to a lesser extent, men, or those cared for at safety-net hospitals were most likely to receive low-intensity vascular care. Low-intensity care was associated with worse long-term event-free survival. These data emphasize the continued disparities that exist in contemporary vascular practice.

Paraskevas KI, Mikhailidis DP, Ringleb PA, Brown MM, Dardik A, Poredos P, Gray WA, Nicolaides AN, Lal BK, Mansilha A, Antignani PL, de Borst GJ, Cambria RP, Loftus IM, Lavie CJ, Blinc A, Lyden SP, Matsumura JS, Jezovnik MK, Bacharach M, Meschia JF, Clair DG, Zeebregts CJ, Lanza G, Capoccia L, Spinelli F, Liapis CD, Jawien A, Parikh SA, Svetlikov A, Menyhei G, Davies AH, Musialek P, Roubin G, Stilo F, Sultan S, Proczka RM, Faggioli G, Geroulakos G, Fernandes JFE, Ricco JB, Saba L, Secemsky EA, Pini R, Myrcha P, Rundek T, Martinelli O, Kakkos SK, Sachar R, Goudot G, Schlachetzki F, Lavenson GS, Ricci S, Topakian R, Millon A, Di Lazzaro V, Silvestrini M, Chaturvedi S, Eckstein HH, Gloviczki P, White CJ. An international, multispecialty, expert-based Delphi Consensus document on controversial issues in the management of patients with asymptomatic and symptomatic carotid stenosis.. Journal of vascular surgery. 2024;79(2):420–435.e1. PMID: 37944771

OBJECTIVE: Despite the publication of various national/international guidelines, several questions concerning the management of patients with asymptomatic (AsxCS) and symptomatic (SxCS) carotid stenosis remain unanswered. The aim of this international, multi-specialty, expert-based Delphi Consensus document was to address these issues to help clinicians make decisions when guidelines are unclear.

METHODS: Fourteen controversial topics were identified. A three-round Delphi Consensus process was performed including 61 experts. The aim of Round 1 was to investigate the differing views and opinions regarding these unresolved topics. In Round 2, clarifications were asked from each participant. In Round 3, the questionnaire was resent to all participants for their final vote. Consensus was reached when ≥75% of experts agreed on a specific response.

RESULTS: Most experts agreed that: (1) the current periprocedural/in-hospital stroke/death thresholds for performing a carotid intervention should be lowered from 6% to 4% in patients with SxCS and from 3% to 2% in patients with AsxCS; (2) the time threshold for a patient being considered "recently symptomatic" should be reduced from the current definition of "6 months" to 3 months or less; (3) 80% to 99% AsxCS carries a higher risk of stroke compared with 60% to 79% AsxCS; (4) factors beyond the grade of stenosis and symptoms should be added to the indications for revascularization in AsxCS patients (eg, plaque features of vulnerability and silent infarctions on brain computed tomography scans); and (5) shunting should be used selectively, rather than always or never. Consensus could not be reached on the remaining topics due to conflicting, inadequate, or controversial evidence.

CONCLUSIONS: The present international, multi-specialty expert-based Delphi Consensus document attempted to provide responses to several unanswered/unresolved issues. However, consensus could not be achieved on some topics, highlighting areas requiring future research.

Paraskevas KI, Brown MM, Lal BK, Myrcha P, Lyden SP, Schneider PA, Poredos P, Mikhailidis DP, Secemsky EA, Musialek P, Mansilha A, Parikh SA, Silvestrini M, Lavie CJ, Dardik A, Blecha M, Liapis CD, Zeebregts CJ, Nederkoorn PJ, Poredos P, Gurevich V, Jawien A, Lanza G, Gray WA, Gupta A, Svetlikov A V, Fernandes JFE, Nicolaides AN, White CJ, Meschia JF, Cronenwett JL, Schermerhorn ML, AbuRahma AF. Recent advances and controversial issues in the optimal management of asymptomatic carotid stenosis.. Journal of vascular surgery. 2024;79(3):695–703. PMID: 37939746

OBJECTIVE: The optimal management of patients with asymptomatic carotid stenosis (AsxCS) is enduringly controversial. We updated our 2021 Expert Review and Position Statement, focusing on recent advances in the diagnosis and management of patients with AsxCS.

METHODS: A systematic review of the literature was performed up to August 1, 2023, using PubMed/PubMed Central, EMBASE and Scopus. The following keywords were used in various combinations: "asymptomatic carotid stenosis," "carotid endarterectomy" (CEA), "carotid artery stenting" (CAS), and "transcarotid artery revascularization" (TCAR). Areas covered included (i) improvements in best medical treatment (BMT) for patients with AsxCS and declining stroke risk, (ii) technological advances in surgical/endovascular skills/techniques and outcomes, (iii) risk factors, clinical/imaging characteristics and risk prediction models for the identification of high-risk AsxCS patient subgroups, and (iv) the association between cognitive dysfunction and AsxCS.

RESULTS: BMT is essential for all patients with AsxCS, regardless of whether they will eventually be offered CEA, CAS, or TCAR. Specific patient subgroups at high risk for stroke despite BMT should be considered for a carotid revascularization procedure. These patients include those with severe (≥80%) AsxCS, transcranial Doppler-detected microemboli, plaque echolucency on Duplex ultrasound examination, silent infarcts on brain computed tomography or magnetic resonance angiography scans, decreased cerebrovascular reserve, increased size of juxtaluminal hypoechoic area, AsxCS progression, carotid plaque ulceration, and intraplaque hemorrhage. Treatment of patients with AsxCS should be individualized, taking into consideration individual patient preferences and needs, clinical and imaging characteristics, and cultural, ethnic, and social factors. Solid evidence supporting or refuting an association between AsxCS and cognitive dysfunction is lacking.

CONCLUSIONS: The optimal management of patients with AsxCS should include BMT for all individuals and a prophylactic carotid revascularization procedure (CEA, CAS, or TCAR) for some asymptomatic patient subgroups, additionally taking into consideration individual patient needs and preference, clinical and imaging characteristics, social and cultural factors, and the available stroke risk prediction models. Future studies should investigate the association between AsxCS with cognitive function and the role of carotid revascularization procedures in the progression or reversal of cognitive dysfunction.