Insulin resistance is a cardinal feature of Type 2 diabetes (T2D) and a frequent complication of multiple clinical conditions, including obesity, ageing and steroid use, among others. How such a panoply of insults can result in a common phenotype is incompletely understood. Furthermore, very little is known about the transcriptional and epigenetic basis of this disorder, despite evidence that such pathways are likely to play a fundamental role. Here, we compare cell autonomous models of insulin resistance induced by the cytokine tumour necrosis factor-α or by the steroid dexamethasone to construct detailed transcriptional and epigenomic maps associated with cellular insulin resistance. These data predict that the glucocorticoid receptor and vitamin D receptor are common mediators of insulin resistance, which we validate using gain- and loss-of-function studies. These studies define a common transcriptional and epigenomic signature in cellular insulin resistance enabling the identification of pathogenic mechanisms.
Publications
2015
Excess caloric intake leads to both the growth of existing fat cells and the generation of new adipocytes. New findings show that PI3K-Akt2 signalling is involved in the differentiation of adult adipose precursor cells—a pathway not required for adipogenesis in the embryo.
2014
Brown fat can reduce obesity through the dissipation of calories as heat. Control of thermogenic gene expression occurs via the induction of various coactivators, most notably PGC-1α. In contrast, the transcription factor partner(s) of these cofactors are poorly described. Here, we identify interferon regulatory factor 4 (IRF4) as a dominant transcriptional effector of thermogenesis. IRF4 is induced by cold and cAMP in adipocytes and is sufficient to promote increased thermogenic gene expression, energy expenditure, and cold tolerance. Conversely, knockout of IRF4 in UCP1(+) cells causes reduced thermogenic gene expression and energy expenditure, obesity, and cold intolerance. IRF4 also induces the expression of PGC-1α and PRDM16 and interacts with PGC-1α, driving Ucp1 expression. Finally, cold, β-agonists, or forced expression of PGC-1α are unable to cause thermogenic gene expression in the absence of IRF4. These studies establish IRF4 as a transcriptional driver of a program of thermogenic gene expression and energy expenditure.
Adipose tissue plays a major role in metabolic homeostasis, which it coordinates through a number of local and systemic effectors. The burgeoning epidemic of metabolic disease, especially obesity and type 2 diabetes, has focused attention on the adipocyte. In this chapter, we review strategies for genetic overexpression and knockout of specific genes in adipose tissue. We also discuss these strategies in the context of different types of adipocytes, including brown, beige, and white fat cells.
There has been an upsurge of interest in the adipocyte coincident with the onset of the obesity epidemic and the realization that adipose tissue plays a major role in the regulation of metabolic function. The past few years, in particular, have seen significant changes in the way that we classify adipocytes and how we view adipose development and differentiation. We have new perspective on the roles played by adipocytes in a variety of homeostatic processes and on the mechanisms used by adipocytes to communicate with other tissues. Finally, there has been significant progress in understanding how these relationships are altered during metabolic disease and how they might be manipulated to restore metabolic health.
2013
EBF1 plays a crucial role in early adipogenesis; however, despite high expression in mature adipocytes, its function in these cells is currently unknown. To identify direct and indirect EBF1 targets in fat, we undertook a combination of transcriptional profiling of EBF1-deficient adipocytes and genome-wide EBF1 location analysis. Our results indicate that many components of metabolic and inflammatory pathways are positively and directly regulated by EBF1, including PI3K/AKT, MAPK, and STAT1 signaling. Accordingly, we observed significant reduction of multiple signaling events in EBF1 knockdown cells as well as a reduction in insulin-stimulated glucose uptake and lipogenesis. Inflammatory signaling, gene expression, and secretion of inflammatory cytokines were also significantly affected by loss of EBF1 in adipocytes, although ChIP-sequencing results suggest that these actions are indirect. We also found that EBF1 occupies some 35,000 sites in adipocytes, most of which occur in enhancers. Significantly, comparison with three other published EBF1 ChIP-sequencing data sets in B-cells reveals both gene- and cell type-specific patterns of EBF1 binding. These results advance our understanding of the transcriptional mechanisms regulating signaling pathways in mature fat cells and indicate that EBF1 functions as a key integrator of signal transduction, inflammation, and metabolism.
Interferon regulatory factors (IRFs) play functionally diverse roles in the transcriptional regulation of the immune system. We have previously shown that several IRFs are regulators of adipogenesis and that IRF4 is a critical transcriptional regulator of adipocyte lipid handling. However, the functional role of IRF4 in adipose tissue macrophages (ATMs) remains unclear, despite high expression there. Here we show that IRF4 expression is regulated in primary macrophages and in ATMs of high-fat diet-induced obese mice. Irf4(-/-) macrophages produce higher levels of proinflammatory cytokines, including interleukin-1β and tumor necrosis factor-α, in response to fatty acids. In coculture experiments, IRF4 deletion in macrophages leads to reduced insulin signaling and glucose uptake in 3T3-L1 adipocytes. To determine the macrophage-specific function of IRF4 in the context of obesity, we generated myeloid cell-specific IRF4 knockout mice, which develop significant insulin resistance on a high-fat diet, despite no difference in adiposity. This phenotype is associated with increased expression of inflammatory genes and decreased insulin signaling in adipose tissue, skeletal muscle, and liver. Furthermore, Irf4(-/-) ATMs express markers suggestive of enhanced M1 polarization. These findings indicate that IRF4 is a negative regulator of inflammation in diet-induced obesity, in part through regulation of macrophage polarization.
2012
The adipocyte-derived hormone leptin is a critical regulator of many physiological functions, ranging from satiety to immunity. Surprisingly, very little is known about the transcriptional pathways that regulate adipocyte-specific expression of leptin. Here, we report studies in which we pursued a strategy integrating BAC transgenic reporter mice, reporter assays, and chromatin state mapping to locate an adipocyte-specific cis-element upstream of the leptin (LEP) gene in human fat cells. Quantitative proteomics with affinity enrichment of protein-DNA complexes identified the transcription factor FOS-like antigen 2 (FOSL2) as binding specifically to the identified region, a result that was confirmed by ChIP. Knockdown of FOSL2 in human adipocytes decreased LEP expression, and overexpression of Fosl2 increased Lep expression in mouse adipocytes. Moreover, the elevated LEP expression observed in obesity correlated well with increased FOSL2 levels in mice and humans, and adipocyte-specific genetic deletion of Fosl2 in mice reduced Lep expression. Taken together, these data identify FOSL2 as a critical regulator of leptin expression in adipocytes.
While there has been significant progress in determining the transcriptional cascade involved in terminal adipocyte differentiation, less is known about early events leading to lineage commitment and cell fate choice. It has been recently discovered that zinc finger protein 423 (Zfp423) is an early actor in adipose determination. Here, we show that a close paralog of Zfp423, Zfp521, acts as a key regulator of adipose commitment and differentiation in vitro and in vivo. Zfp521 exerts its actions by binding to early B cell factor 1 (Ebf1), a transcription factor required for the generation of adipocyte progenitors, and inhibiting the expression of Zfp423. Overexpression of Zfp521 in cells greatly inhibits adipogenic potential, whereas RNAi-mediated knock-down or genetic ablation of Zfp521 enhances differentiation. In addition, Zfp521⁻/⁻ embryos exhibit increased mass of interscapular brown adipose tissue and subcutaneous white adipocytes, a cell autonomous effect. Finally, Ebf1 participates in a negative feedback loop to repress Zfp521 as differentiation proceeds. Because Zfp521 is known to promote bone development, our results suggest that it acts as a critical switch in the commitment decision between the adipogenic and osteogenic lineages.
2011
Adipose tissue controls energy homeostasis and systemic insulin sensitivity through the elaboration of a series of cytokines and hormones, collectively termed "adipokines." We and others have identified Lcn2 as a novel adipokine, but its exact role in obesity-induced insulin resistance remains controversial. The aim of this study was to examine the metabolic phenotype of Lcn2(-/-) mice to clarify the role of Lcn2 in metabolism. Male and female Lcn2(-/-) and wild-type (WT) littermates were placed on either chow or high-fat diet (HFD) to characterize their metabolic phenotype. Studies included body weight and body composition, glucose and insulin tolerance tests, and adipokine expression studies in serum and in white adipose tissue (WAT). Neither chow nor HFD cohorts showed any differences in body weight or body composition. Chow-fed Lcn2(-/-) mice did not exhibit any difference in glucose homeostasis compared with WT mice. Fasting serum glucose levels were lower in the chow-fed Lcn2(-/-) mice, but this finding was not seen in the HFD cohort. Serum adiponectin, leptin, resistin, and RBP4 levels were not different between WT and Lcn2(-/-) on chow diet. HFD-fed male Lcn2(-/-) mice did display a small improvement in glucose tolerance, but no difference in insulin sensitivity was seen in either male or female Lcn2(-/-) mice on HFD. We conclude that the global ablation of Lcn2 has a minimal effect on obesity-associated glucose intolerance but does not appear to affect either age- or obesity-mediated insulin resistance in vivo.