- Home
- April 2017
April 2017
PURPOSE: To describe a case of bilateral endogenous cryptococcal endophthalmitis in an immunocompetent host and to review adjunctive ophthalmic imaging patterns and treatment. METHODS: A retrospective case report. RESULTS: A 45-year-old female patient with two distinct presentations of endogenous cryptococcal endophthalmitis in each eye presented initially with progressive blurred vision in the left eye, beginning more than 10 years after a craniotomy with ventriculoperitoneal shunt. Complete ophthalmic imaging was conducted and compared with data from previous literature. Administration of amphotericin-B had poorly responded; however, consolidation of fluconazole resulted in disease stabilization. CONCLUSIONS: Bilateral intraocular cryptococcal infection can present with two distinct patterns of posterior segment findings. A review of ophthalmic imaging patterns found consistency in some characteristics of A-scan ultrasonogram and fundus fluorescein angiogram. Besides conventional treatment, voriconazole is likely to play an important role in the management of cryptococcal endophthalmitis.
Posner-Schlossman syndrome (PSS) shares some clinical features with uveitis and open angle glaucoma. Cytokines and autoantibodies have been associated with uveitis and open angle glaucoma. However, the role of serum cytokines and autoantibodies in the pathogenesis of PSS remains unknown. This study aimed to evaluate the associations of type 1 T helper (Th1) and Th17 related cytokines and autoantibodies with PSS. Peripheral blood serum samples were collected from 81 patients with PSS and 97 gender- and age-matched healthy blood donors. Th1 and Th17 related cytokines, including interleukin-1β (IL-1β), IL-12, tumor necrosis factor-α (TNF-α), interferon- γ (IFN-γ), IL-6 and IL-17, and glucose-6-phosphate isomerase (GPI) were determined by double antibody sandwich ELISA. Anti-nuclear antibody (ANA), anti-keratin antibody (AKA) and anti-neutrophil cytoplasmic antibody (ANCA) were detected by indirect immunofluorescence assay. Anti-cardiolipin antibody (ACA)-IgG, ACA-IgM, ACA-IgA, anti-double stranded DNA (anti-dsDNA) and anti-cyclic citrullinated peptide antibody (anti-CCP) were detected by indirect ELISA. Serum levels of IL-1β, IL-12 and IL-6 in PSS patients were significantly lower than those in controls (P < 0.003), and these associations survived the Bonferroni correction (Pc < 0.018). There was no significant difference in serum levels of TNF-α, IFN-γ and IL-17 between the PSS and control groups (Pc > 0.12). Positive rate of serum anti-dsDNA in PSS patients was significantly higher than that in the control group (P = 0.002, Pc = 0.018), while positive rates of serum ANA, AKA, ANCA, ACA-IgG, ACA-IgM, ACA-IgA, GPI and anti-CCP in the PSS group were not significantly different from those in the control group (Pc > 0.09). These results suggest that anti-dsDNA may contribute to the pathogenesis of PSS, while Th1 and Th17 related cytokines and other autoantibodies may not be major contributors to PSS.
Whole-brain networks derived from diffusion tensor imaging (DTI) data require the identification of seed and target regions of interest (ROIs) to assess connectivity patterns. This study investigated how initiating tracts from gray matter (GM) or white matter (WM) seed ROIs impacts (1) structural networks constructed from DTI data from healthy elderly (control) and individuals with Alzheimer's disease (AD) and (2) between-group comparisons using these networks. DTI datasets were obtained from the Alzheimer's disease Neuroimaging Initiative database. Deterministic tractography was used to build two whole-brain networks for each subject; one in which tracts were initiated from WM ROIs and another in which they were initiated from GM ROIs. With respect to the first goal, in both groups, WM-seeded networks had approximately 400 more connections and stronger connections (as measured by number of streamlines per connection) than GM-seeded networks, but shared 94% of the connections found in the GM-seed networks. With respect to the second goal, between-group comparisons revealed a stronger subnetwork (as measured by number of streamlines per connection) in controls compared to AD using both WM-seeded and GM-seeded networks. The comparison using WM-seeded networks produced a larger (i.e., a greater number of connections) and more significant subnetwork in controls versus AD. Global, local, and nodal efficiency were greater in controls compared to AD, and between-group comparisons of these measures using WM-seeded networks had larger effect sizes than those using GM-seeded networks. These findings affirm that seed location significantly affects the ability to detect between-group differences in structural networks.
PURPOSE: To compare diagnostic performance and structure-function correlations of multifocal electroretinogram (mfERG), full-field flash ERG (ff-ERG) photopic negative response (PhNR) and transient pattern-reversal ERG (PERG) in a non-human primate (NHP) model of experimental glaucoma (EG). METHODS: At baseline and after induction of chronic unilateral IOP elevation, 43 NHP had alternating weekly recordings of retinal nerve fiber layer thickness (RNFLT) by spectral domain OCT (Spectralis) and retinal function by mfERG (7F slow-sequence stimulus, VERIS), ff-ERG (red 0.42 log cd-s/m(2) flashes on blue 30 scotopic cd/m(2) background, LKC UTAS-E3000), and PERG (0.8° checks, 99% contrast, 100 cd/m(2) mean, 5 reversals/s, VERIS). All NHP were followed at least until HRT-confirmed optic nerve head posterior deformation, most to later stages. mfERG responses were filtered into low- and high-frequency components (LFC, HFC, >75 Hz). Peak-to-trough amplitudes of LFC features (N1, P1, N2) and HFC RMS amplitudes were measured and ratios calculated for HFC:P1 and N2:P1. ff-ERG parameters included A-wave (at 10 ms), B-wave (trough-to-peak) and PhNR (baseline-to-trough) amplitudes as well as PhNR:B-wave ratio. PERG parameters included P50 and N95 amplitudes as well as N95:P50 ratio and N95 slope. Diagnostic performance of retinal function parameters was compared using the area under the receiver operating characteristic curve (A-ROC) to discriminate between EG and control eyes. Correlations to RNFLT were compared using Steiger's test. RESULTS: Study duration was 15 ± 8 months. At final follow-up, structural damage in EG eyes measured by RNFLT ranged from 9% above baseline (BL) to 58% below BL; 29/43 EG eyes (67%) and 0/43 of the fellow control eyes exhibited significant (>7%) loss of RNFLT from BL. Using raw parameter values, the largest A-ROC findings for mfERG were: HFC (0.82) and HFC:P1 (0.90); for ff-ERG: PhNR (0.90) and PhNR:B-wave (0.88) and for PERG: P50 (0.64) and N95 (0.61). A-ROC increased when data were expressed as % change from BL, but the pattern of results persisted. At 95% specificity, the diagnostic sensitivity of mfERG HFC:P1 ratio was best, followed by PhNR and PERG. The correlation to RNFLT was stronger for mfERG HFC (R = 0.65) than for PhNR (R = 0.59) or PERG N95 (R = 0.36), (p = 0.20, p = 0.0006, respectively). The PhNR flagged a few EG eyes at the final time point that had not been flagged by mfERG HFC or PERG. CONCLUSIONS: Diagnostic performance and structure-function correlation were strongest for mfERG HFC as compared with ff-ERG PhNR or PERG in NHP EG.
Antigen-presenting cells (APCs) play an important role in transplant rejection and tolerance. In high-risk corneal transplantation, where the graft bed is inflamed and vascularized, immature APCs in the donor corneal stroma quickly mature and migrate to lymphoid tissues to sensitize host T cells. In this study, using a mouse model of corneal transplantation, we investigated whether enrichment of tolerogenic APCs (tolAPCs) in donor corneas can enhance graft survival in corneal allograft recipients with inflamed graft beds. Treatment of donor corneas with interleukin-10 (IL-10) and transforming growth factor-β1 (TGFβ1) altered the phenotype and function of tissue-residing APCs. Transplantation of these tolAPC-enriched corneas decreased frequencies of interferon gamma (IFNγ)(+) effector T cells (Teffs), as well as allosensitization in the hosts, diminished graft infiltration of CD45(+) and CD4(+) cells, and significantly improved corneal allograft survival compared to saline-injected controls. These data provide a novel approach for tolAPC-based immunotherapy in transplantation by direct cytokine conditioning of the donor tissue.
The use of viral vectors for inner ear gene therapy is receiving increased attention for treatment of genetic hearing disorders. Most animal studies to date have injected viral suspensions into neonatal ears, via the round window membrane. Achieving transduction of hair cells, or sensory neurons, throughout the cochlea has proven difficult, and no studies have been able to efficiently transduce sensory cells in adult ears while maintaining normal cochlear function. Here, we show, for the first time, successful transduction of all inner hair cells and the majority of outer hair cells in an adult cochlea via virus injection into the posterior semicircular canal. We used a "designer" AAV, AAV2/Anc80L65, in which the main capsid proteins approximate the ancestral sequence state of AAV1, 2, 8, and 9. Our injections also transduced ~10% of spiral ganglion cells and a much larger fraction of their satellite cells. In the vestibular sensory epithelia, the virus transduced large numbers of hair cells and virtually all the supporting cells, along with close to half of the vestibular ganglion cells. We conclude that this viral vector and this delivery route hold great promise for gene therapy applications in both cochlear and vestibular sense organs.
Transposons can be used to easily generate and label the location of mutations throughout bacterial and other genomes. Transposon insertion mutants may be screened for a phenotype as individual isolates, or by selection applied to a pool of thousands of mutants. Identifying the location of a transposon insertion is critical for connecting phenotype to the genetic lesion. In this unit, we present an easy and detailed approach for mapping transposon insertion sites using arbitrarily-primed PCR (AP-PCR). Two rounds of PCR are used to (1) amplify DNA spanning the transposon insertion junction, and (2) increase the specific yield of transposon insertion junction fragments for sequence analysis. The resulting sequence is mapped to a bacterial genome to identify the site of transposon insertion. In this protocol, AP-PCR as it is routinely used to map sites of transposon insertion within Staphylococcus aureus, is used to illustrate the principle. Guidelines are provided for adapting this protocol for mapping insertions in other bacterial genomes. Mapping transposon insertions using this method is typically achieved in 2 to 3 days if starting from a culture of the transposon insertion mutant. © 2017 by John Wiley & Sons, Inc.
OBJECTIVE: To examine early performance on an eye surgery simulator and its relationship to subsequent live surgical performance in a single large residency program. DESIGN: Retrospective study. SETTING: Massachusetts Eye and Ear, Harvard Medical School, Department of Ophthalmology. METHODS: In a retrospective study, we compared performance of 30 first-year ophthalmology residents on an eye surgery simulator to their surgical skills as third-year residents. Variables collected from the eye surgery simulator included scores on the following modules of the simulator (Eyesi, VRmagic, Mannheim, Germany): antitremor training level 1, bimanual training level 1, capsulorhexis level 1 (configured), forceps training level 1, and navigation training level 1. Subsequent surgical performance was assessed using the total number of phacoemulsification cataract surgery cases for each resident, as well as the number performed as surgeon during residency and scores on global rating assessment of skills in intraocular surgery (GRASIS) scales during the third year of residency. Spearman correlation coefficients were calculated between each of the simulator performance and subsequent surgical performance variables. We also compared variables in a small group of residents who needed extra help in learning cataract surgery to the other residents in the study. MAIN OUTCOME MEASURES: Relationships between Eyesi scores early in residency and surgical performance measures in the final year of residency. RESULTS: A total of 30 residents had Eyesi data from their first year of residency and had already graduated so that all subsequent surgical performance data were available. There was a significant correlation between capsulorhexis task score on the simulator and total surgeries (r = 0.745, p = 0.008). There was a significant correlation between antitremor training level 1 (r = 0.554, p = 0.040), and forceps training level 1 (r = 0.622, p = 0.023) with primary surgery numbers. There was a significant correlation between forceps training level 1 (r = 0.811, p = 0.002), and navigation training level 1 (r = 0.692, p =0.013) with total GRASIS score. There was a significant inverse correlation between total GRASIS score and residents in need of extra help (r = -0.358, p =0.003). CONCLUSION: Module scores on an eye surgery simulator early in residency may predict a resident׳s future performance in the operating room. These scores may allow early identification of residents in need of supplemental training in cataract surgery.
Human adenoviruses (HAdVs) shut down host cellular cap-dependent mRNA translation while initiating the translation of viral late mRNAs in a cap-independent manner. HAdV 5' untranslated regions (5'UTRs) are crucial for cap-independent initiation, and influence mRNA localization and stability. However, HAdV translational regulation remains relatively uncharacterized. The HAdV tripartite leader (TPL), composed of three introns (TPL 1-3), is critical to the translation of HAdV late mRNA. Herein, we annotated and analyzed 72 HAdV genotypes for the HAdV TPL and another previously described leader, the i-leader. Using HAdV species D, type 37 (HAdV-D37), we show by reverse transcription PCR and Sanger sequencing that mRNAs of the HAdV-D37 E3 transcription unit are spliced to the TPL. We also identified a polycistronic mRNA for RID-α and RID-β. Analysis of the i-leader revealed a potential open reading frame within the leader sequence and the termination of this potential protein in TPL3. A potential new leader embedded within the E3 region was also detected and tentatively named the j-leader. These results suggest an underappreciated complexity of post-transcriptional regulation, and the importance of HAdV 5'UTRs for precisely coordinated viral protein expression along the path from genotype to phenotype.
Verteporfin (VP) was first used in Photodynamic therapy, where a non-thermal laser light (689 nm) in the presence of oxygen activates the drug to produce highly reactive oxygen radicals, resulting in local cell and tissue damage. However, it has also been shown that Verteporfin can have non-photoactivated effects such as interference with the YAP-TEAD complex of the HIPPO pathway, resulting in growth inhibition of several neoplasias. More recently, it was proposed that, another non-light mediated effect of VP is the formation of cross-linked oligomers and high molecular weight protein complexes (HMWC) that are hypothesized to interfere with autophagy and cell growth. Here, in a series of experiments, using human uveal melanoma cells (MEL 270), human embryonic kidney cells (HEK) and breast cancer cells (MCF7) we showed that Verteporfin-induced HMWC require the presence of light. Furthermore, we showed that the mechanism of this cross-linking, which involves both singlet oxygen and radical generation, can occur very efficiently even after lysis of the cells, if the lysate is not protected from ambient light. This work offers a better understanding regarding VP's mechanisms of action and suggests caution when one studies the non-light mediated actions of this drug.
Regulation of biological processes occurs through complex, synergistic mechanisms. In this study, we discovered the synergistic orchestration of multiple mechanisms regulating the normal and diseased state (age related macular degeneration, AMD) in the retina. We uncovered gene networks with overlapping feedback loops that are modulated by nuclear hormone receptors (NHR), miRNAs, and epigenetic factors. We utilized a comprehensive filtering and pathway analysis strategy comparing miRNA and microarray data between three mouse models and human donor eyes (normal and AMD). The mouse models lack key NHRS (Nr2e3, RORA) or epigenetic (Ezh2) factors. Fifty-four total miRNAs were differentially expressed, potentially targeting over 150 genes in 18 major representative networks including angiogenesis, metabolism, and immunity. We identified sixty-eight genes and 5 miRNAS directly regulated by NR2E3 and/or RORA. After a comprehensive analysis, we discovered multimodal regulation by miRNA, NHRs, and epigenetic factors of three miRNAs (miR-466, miR1187, and miR-710) and two genes (Ell2 and Entpd1) that are also associated with AMD. These studies provide insight into the complex, dynamic modulation of gene networks as well as their impact on human disease, and provide novel data for the development of innovative and more effective therapeutics.
Purpose: To spatially and temporally define ocular motor nerve development in the presence and absence of extraocular muscles (EOMs). Methods: Myf5cre mice, which in the homozygous state lack EOMs, were crossed to an IslMN:GFP reporter line to fluorescently label motor neuron cell bodies and axons. Embryonic day (E) 11.5 to E15.5 wild-type and Myf5cre/cre:IslMN:GFP whole mount embryos and dissected orbits were imaged by confocal microscopy to visualize the developing oculomotor, trochlear, and abducens nerves in the presence and absence of EOMs. E11.5 and E18.5 brainstems were serially sectioned and stained for Islet1 to determine the fate of ocular motor neurons. Results: At E11.5, all three ocular motor nerves in mutant embryos approached the orbit with a trajectory similar to that of wild-type. Subsequently, while wild-type nerves send terminal branches that contact target EOMs in a stereotypical pattern, the Myf5cre/cre ocular motor nerves failed to form terminal branches, regressed, and by E18.5 two-thirds of their corresponding motor neurons died. Comparisons between mutant and wild-type embryos revealed novel aspects of trochlear and oculomotor nerve development. Conclusions: We delineated mouse ocular motor nerve spatial and temporal development in unprecedented detail. Moreover, we found that EOMs are not necessary for initial outgrowth and guidance of ocular motor axons from the brainstem to the orbit but are required for their terminal branching and survival. These data suggest that intermediate targets in the mesenchyme provide cues necessary for appropriate targeting of ocular motor axons to the orbit, while EOM cues are responsible for terminal branching and motor neuron survival.
Motor, sensory, and integrative activities of the brain are coordinated by a series of midline-bridging neuronal commissures whose development is tightly regulated. Here we report a new human syndrome in which these commissures are widely disrupted, thus causing clinical manifestations of horizontal gaze palsy, scoliosis, and intellectual disability. Affected individuals were found to possess biallelic loss-of-function mutations in the gene encoding the axon-guidance receptor 'deleted in colorectal carcinoma' (DCC), which has been implicated in congenital mirror movements when it is mutated in the heterozygous state but whose biallelic loss-of-function human phenotype has not been reported. Structural MRI and diffusion tractography demonstrated broad disorganization of white-matter tracts throughout the human central nervous system (CNS), including loss of all commissural tracts at multiple levels of the neuraxis. Combined with data from animal models, these findings show that DCC is a master regulator of midline crossing and development of white-matter projections throughout the human CNS.
Transplantation of cultured oral mucosal epithelial cells (OMECs) is a promising treatment strategy for limbal stem cell deficiency. In order to improve the culture method, we investigated the effects of four culture media and tissue harvesting sites on explant attachment, growth, and phenotype of OMECs cultured from Sprague-Dawley rats. Neither choice of media or harvesting site impacted the ability of the explants to attach to the culture well. Dulbecco's modified Eagle's medium/Ham's F12 (DMEM) and Roswell Park Memorial Institute 1640 medium (RPMI) supported the largest cellular outgrowth. Fold outgrowth was superior from LL explants compared to explants from the buccal mucosa (BM), HP, and transition zone of the lower lip (TZ) after six-day culture. Putative stem cell markers were detected in cultures grown in DMEM and RPMI. In DMEM, cells from TZ showed higher colony-forming efficiency than LL, BM, and HP. In contrast to RPMI, DMEM both expressed the putative stem cell marker Bmi-1 and yielded cell colonies. Our data suggest that OMECs from LL and TZ cultured in DMEM give rise to undifferentiated cells with high growth capacity, and hence are the most promising for treatment of limbal stem cell deficiency.
Importance: Pyogenic granulomas, acquired vascular lesions, form on the ocular or palpebral surface related to inflammation from chalazia, trauma, or surgery. They can be unsightly, spontaneously bleed, and cause irritation to patients. Observations: A case series is presented of 4 consecutive children with acquired ocular surface pyogenic granulomas treated at Boston Children's Hospital from 2014 to 2016 with only topical timolol, 0.5%, twice daily for a minimum of 21 days. In all cases, complete resolution occurred within the treatment period with no recurrence for at least 3 months. There were no adverse effects from the timolol during follow-up. Conclusions and Relevance: This case series of 4 children, while limited to no greater than 12 weeks of follow-up and without control children, suggests that ocular surface pyogenic granulomas respond to topical timolol treatment, which has a lower adverse-effect profile than conventional topical steroid treatments or other medical or surgical therapies. If confirmed in larger studies with longer follow-up and controls, this may be the desired treatment modality.
This article presents a surgical technique using a pericardial patch for the permanent repair of severe scleral thinning encountered during strabismus surgery. In the present case scleral thinning resulted from buckle removal. Familiarity with this technique may prove important for the strabismus surgeon treating patients with a history of surface ocular hardware or disease-induced scleral thinning. This video article may be viewed atjaapos.org.
PURPOSE: To determine whether botulinum toxin is as effective as strabismus surgery in the treatment of acute-onset comitant esotropia in children. DESIGN: Retrospective, nonrandomized, comparative clinical study. METHODS: Setting: Tertiary care pediatric hospital. STUDY POPULATION: Forty-nine children with acute-onset comitant esotropia. INTERVENTION: Treatment with either botulinum toxin ("chemodenervation group") or standard incisional strabismus surgery ("surgery group"). MAIN OUTCOME MEASURE: Success rate at 6 months (total horizontal deviation of 10 prism diopters or less and evidence of binocular single vision). RESULTS: There were 16 patients in the chemodenervation group and 33 patients in the surgery group. The success rate was not significantly different at 6 months (81% vs 61%, P = .20) or at 18 months (67% vs 58%, P = .74). The median angle of deviation and median stereoacuity were not significantly different at 6 or 18 months. The chemodenervation procedure was not inferior to incisional strabismus surgery at 6 months. The duration of general anesthesia (5 vs 71 min, P < .001) and time in the post-anesthesia care unit (37 vs 93 min, P < .001) were significantly shorter in the chemodenervation group. Botulinum toxin injection payment averaged $874 per procedure compared with $2783 for strabismus surgery. CONCLUSIONS: Botulinum toxin is at least as effective as surgery in the treatment of acute-onset comitant esotropia at 6 months while reducing the duration of general anesthesia and healthcare costs.
We describe the surgical technique of endoscopic cyclophotocoagulation in a Boston keratoprosthesis type II patient. This patient with ocular cicatricial pemphigoid had pars plana endoscopic cyclophotocoagula through wounds created in the eyelids.
PURPOSE: To delineate and compare the kinetics of corneal angiogenesis after high-risk (HR) versus low-risk (LR) corneal transplantation. METHODS: In mice, intrastromal sutures were placed in the recipient graft bed 2 weeks before allogeneic transplantation to induce angiogenesis and amplify the risk of graft rejection. Control (LR) graft recipients did not undergo suture placement, and thus the host bed remained avascular at the time of transplantation. Graft hemangiogenesis and opacity scores were evaluated for 8 weeks by slit-lamp biomicroscopy. Immunohistochemistry was used to measure CD31 (blood vessels) and LYVE-1 (lymphatic vessels) cells. RESULTS: Biphasic kinetics were observed for hemangiogenesis in both HR and LR transplant recipients using clinical and immunohistochemical assessments. The biphasic kinetics were composed of a rise-fall (phase 1) followed by a second rise (phase 2) in the degree of vessels. Compared with LR recipients, HR recipients showed higher hemangiogenesis (whole cornea and graft) throughout 8 weeks. Analyzing grafts revealed sustained presence of lymphatic vessels in HR recipients; however, lymphatic neovessels regressed in LR recipients 2 weeks posttransplantation. In contrast to HR host beds, the LR host bed microenvironment cannot sustain the growth of lymphatic neovessels in allografts, whereas it can sustain continued hemangiogenesis. CONCLUSIONS: The sustained presence of lymphatic vessels in HR host beds can facilitate host immunity against allografts and is likely associated with ongoing higher risk of rejection of these grafts in the long term, suggesting that therapeutic interventions targeting inflammation and lymphatic vessels need to be sustained long term in the HR corneal transplant setting.
PURPOSE: We report for the first time electroretinographic (ERG) evidence of progressive retinal abnormalities in a girl who presented in infancy with ocular features of albinism and gradually developed choroidal sclerosis and patchy retinal atrophy leading to a diagnosis of Knobloch syndrome (KS, OMIM 267750, COL18A1). METHODS: At age 2 months, nystagmus and esotropia prompted ophthalmic evaluation. The appearance of choroidal sclerosis and atrophic retinal patches led to further evaluation at age 8 years. Genetics consultation was obtained in infancy and again at age 8 years as retinal findings evolved. Full field ERG responses in both scotopic and photopic conditions were recorded at both ages and compared to those in healthy control subjects. RESULTS: At age 2 months ERG response parameters were within normal limits for age and tyrosinase (TYR) gene sequencing revealed one novel mutation, p.S466F, and the temperature-sensitive polymorphism, p.R402Q, suggesting the diagnosis of oculocutaneous albinism type 1 (OCA1). At age 8 years, there was significant attenuation of both scotopic and photopic ERG responses. Genetic re-analysis led to the identification of a homozygous mutation, c.3213dupC, in the COL18A1 gene, thus confirming the diagnosis of Knobloch syndrome. CONCLUSIONS: Our patient with Knobloch syndrome developed abnormal ERG responses similar to those found in col18a1 knockout mice. Thus, we have documented progressive attenuation of the scotopic and photopic responses in KS.
PURPOSE: To investigate the levels of neutrophil elastase (NE), matrix metalloproteinases (MMPs), and myeloperoxidase (MPO) in tear washes of patients with ocular graft-vs-host disease (oGVHD). DESIGN: Case-control study. METHODS: Based on established criteria, oGVHD patients (n = 14; 28 eyes) and age-/sex-matched healthy controls (n = 14; 28 eyes) were enrolled. Tear washes were collected and analyzed for NE using a single-analyte enzyme-linked immunosorbent assay (ELISA). MMPs (1, 2, 3, 7, 8, 9, 12), MPO, and tissue inhibitor of matrix metalloproteinase (TIMP)-1 were analyzed using multianalyte bead-based ELISA assays. Total MMP activity was measured using a fluorimetric assay. Correlation studies were performed between NE, MMP-8, MMP-9, and MPO within study groups. RESULTS: NE, MMP-8, MMP-9, and MPO levels were elevated in oGVHD tears when compared with controls (P < .0001). NE was the most elevated analyte. MMP activity was higher and TIMP-1 levels were lower in oGVHD than in control (P < .0001). In oGVHD, NE significantly correlated with MMP-8 (r = 0.92), MMP-9 (r = 0.90), and MPO (r = 0.79) (P < .0001). MMP-8 correlated with MMP-9 (r = 0.96, P < .0001), and MPO (r = 0.60, P = .001). MMP-9 correlated with MPO (r = 0.55, P = .002). In controls, NE, MMP-9, and MPO significantly correlated with each other (P < .0001). CONCLUSIONS: The marked increase in NE in oGVHD tears that correlated strongly with elevated MMP-8, MMP-9, and MPO suggests a common neutrophilic source and provides evidence of neutrophil activity on the ocular surface of oGVHD patients.
Duane syndrome is a congenital cranial dysinnervation disorder involving absent or anomalous innervation of the lateral and medial rectus muscles that is sometimes associated with other manifestations of dysinnervation. We describe a patient with right esotropic Duane syndrome with a long-standing retroauricular tugging sensation in right gaze who was noted to have prominent ipsilateral oculo-auricular phenomenon, representing either abnormal enhancement of existing innervation or an uncommon dysinnervation. After successful strabismus surgery the tugging sensation improved but the phenomenon could still be elicited.
