We observed that the third leading cause of blindness in the world, age-related macular degeneration (AMD), occurs at a very low documented frequency in a population-based cohort from Timor-Leste. Thus, we determined a complete catalog of the ancestry of the Timorese by analysis of whole exome chip data and haplogroup analysis of SNP genotypes determined by sequencing the Hypervariable I and II regions of the mitochondrial genome and 17 genotyped YSTR markers obtained from 535 individuals. We genotyped 20 previously reported AMD-associated SNPs in the Timorese to examine their allele frequencies compared to and between previously documented AMD cohorts of varying ethnicities. For those without AMD (average age > 55 years), genotype and allele frequencies were similar for most SNPs with a few exceptions. The major risk allele of HTRA1 rs11200638 (10q26) was at a significantly higher frequency in the Timorese, as well as 3 of the 5 protective CFH (1q32) SNPs (rs800292, rs2284664, and rs12066959). Additionally, the most commonly associated AMD-risk SNP, CFH rs1061170 (Y402H), was also seen at a much lower frequency in the Korean and Timorese populations than in the assessed Caucasian populations (C ~7 vs. ~40%, respectively). The difference in allele frequencies between the Timorese population and the other genotyped populations, along with the haplogroup analysis, also highlight the genetic diversity of the Timorese. Specifically, the most common ancestry groupings were Oceanic (Melanesian and Papuan) and Eastern Asian (specifically Han Chinese). The low prevalence of AMD in the Timorese population (2 of 535 randomly selected participants) may be due to the enrichment of protective alleles in this population at the 1q32 locus.
- Home
- July 2015
July 2015
Recessive mutations in RLBP1 cause a form of retinitis pigmentosa in which the retina, before its degeneration leads to blindness, abnormally slowly recovers sensitivity after exposure to light. To develop a potential gene therapy for this condition, we tested multiple recombinant adeno-associated vectors (rAAVs) composed of different promoters, capsid serotypes, and genome conformations. We generated rAAVs in which sequences from the promoters of the human RLBP1, RPE65, or BEST1 genes drove the expression of a reporter gene (green fluorescent protein). A promoter derived from the RLBP1 gene mediated expression in the retinal pigment epithelium and Müller cells (the intended target cell types) at qualitatively higher levels than in other retinal cell types in wild-type mice and monkeys. With this promoter upstream of the coding sequence of the human RLBP1 gene, we compared the potencies of vectors with an AAV2 versus an AAV8 capsid in transducing mouse retinas, and we compared vectors with a self-complementary versus a single-stranded genome. The optimal vector (scAAV8-pRLBP1-hRLBP1) had serotype 8 capsid and a self-complementary genome. Subretinal injection of scAAV8-pRLBP1-hRLBP1 in Rlbp1 nullizygous mice improved the rate of dark adaptation based on scotopic (rod-plus-cone) and photopic (cone) electroretinograms (ERGs). The effect was still present after 1 year.
Metastatic renal carcinoma is the third most common source of ocular and second most common source of orbital metastases. This is the first published case of von Hippel-Lindau (vHL) disease that developed renal cell carcinoma metastatic to an eye with a retinal hemangioblastoma. A 73-year-old woman had a history of vHL disease that included prior retinal hemangioblastomas, 2 cerebellar hemangioblastomas, and bilateral renal cell carcinomas with sacral metastasis. After presenting with progressive, painful proptosis secondary to a large mass observable by ocular CT, an enucleation-orbitotomy was performed, and the surgical specimen was sent for histopathological analysis. The ophthalmic renal metastatic tumor, like the primary tumor, was a clear cell variant that involved both the eyeball and orbit in continuity. The intraocular component was larger than the extraocular portion, which was interpreted as an outward extension of an initial retinal metastasis that probably first settled within a hemangioblastoma. Clusters of ectatic ghost vessels with thickened walls produced by periodic acid Schiff-positive, redundant basement membrane material were partially infiltrated by tumor cells at their periphery, thereby lending some support for this hypothesis. Immunohistochemical positivity for the biomarkers cytokeratin 18, vimentin, carbonic anhydrase IX, PAX2, and PAX 8 confirmed the diagnosis. The patient has refused further treatment. Her anophthalmic socket has comfortably retained a porous polyethylene implant without clinical evidence of local recurrence during 5 months of follow up.
IMPORTANCE: To describe a cohort of patients with birdshot chorioretinopathy who did not manifest birdshot lesions on clinical examination but had retinal vasculitis, low-grade to moderate vitritis, and hypocyanescent lesions on indocyanine green angiography (ICGA). OBSERVATIONS: Case series of 3 patients with mild to moderate vitritis and retinal vasculitis without definite birdshot lesions on clinical examination evaluated from January 2007 to December 2014 at 4 academic ophthalmology centers. All patients' results were positive for human leukocyte antigen-A29. All cases had hypocyanescent lesions visible on ICGA but not detectable on fluorescein angiography. CONCLUSIONS AND RELEVANCE: Patients with retinal vasculitis and low-grade vitritis with or without macular edema may have birdshot chorioretinopathy evident on ICGA before lesions are visible on clinical examination or fluorescein angiography. Expanding birdshot chorioretinopathy diagnostic criteria to include the presence of hypocyanescent lesions on ICGA could improve the sensitivity of diagnosis.
Homozygosity has long been associated with rare, often devastating, Mendelian disorders, and Darwin was one of the first to recognize that inbreeding reduces evolutionary fitness. However, the effect of the more distant parental relatedness that is common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power. Here we use runs of homozygosity to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts, and find statistically significant associations between summed runs of homozygosity and four complex traits: height, forced expiratory lung volume in one second, general cognitive ability and educational attainment (P < 1 × 10(-300), 2.1 × 10(-6), 2.5 × 10(-10) and 1.8 × 10(-10), respectively). In each case, increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months' less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing evidence that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been.
OBJECTIVE: Patients suffering from corneal neuropathy may present with photoallodynia; i.e., increased light sensitivity, frequently with a normal slit-lamp examination. This study aimed to evaluate the efficacy of autologous serum tears (AST) for treatment of severe photoallodynia in corneal neuropathy and to correlate clinical findings with corneal subbasal nerve alterations by in vivo confocal microscopy (IVCM). METHODS: Retrospective case control study with 16 patients with neuropathy-induced severe photoallodynia compared to 16 normal controls. Symptom severity, clinical examination and bilateral corneal IVCM scans were recorded. RESULTS: All patients suffered from extreme photoallodynia (8.8±1.1) with no concurrent ocular surface disease. Subbasal nerves were significantly decreased at baseline in patients compared to controls; total nerve length (9208±1264 vs 24714±1056 μm/mm(2); P<.0001) and total nerve number (9.6±1.4 vs 28.6±2.0; P<.0001), respectively. Morphologically, significantly increased reflectivity (2.9±0.2 vs 1.8±0.1; P<.0001), beading (in 93.7%), and neuromas (in 62.5%) were seen. AST (3.6±2.1 months) resulted in significantly decreased symptom severity (1.6±1.7; P=.02). IVCM demonstrated significantly improved nerve parameters (P<.005), total nerve length (15451±1595 μm/mm(2)), number (13.9±2.1), and reflectivity (1.9±0.1). Beading and neuromas were seen in only 56.2% and 7.6% of patients. CONCLUSION: Patients with corneal neuropathy-induced photoallodynia show profound alterations in corneal nerves. AST restores nerve topography through nerve regeneration, and this correlated with improvement in patient-reported photoallodynia. The data support the notion that corneal nerve damage results in alterations in afferent trigeminal pathways to produce photoallodynia.
Impaired corneal wound healing that occurs with ocular surface disease, trauma, systemic disease, or surgical intervention can lead to persistent corneal epithelial defects (PCED), which result in corneal scarring, ulceration, opacification, corneal neovascularization, and, ultimately, visual compromise and vision loss. The current standard of care can include lubricants, ointments, bandage lenses, amniotic membranes, autologous serum eye drops, and corneal transplants. Various inherent problems exist with application and administration of these treatments, which often may not result in a completely healed surface. A topically applicable compound capable of promoting corneal epithelial cell proliferation and/or migration would be ideal to accelerate healing. We hypothesize that human growth hormone (HGH) is such a compound. In a recent study, HGH was shown to activate signal transducer and activators of transcription-5 (STAT5) signaling and promote corneal wound healing by enhancing corneal epithelial migration in a co-culture system of corneal epithelial cells and fibroblasts. These effects require an intact communication between corneal epithelia and fibroblasts. Further, HGH promotes corneal wound healing in a rabbit debridement model, thus demonstrating the effectiveness of HGH in vivo as well. In conclusion, HGH may represent an exciting and effective topical therapeutic to promote corneal wound healing.
The etiology of Posner-Schlossman syndrome (PSS) remains unknown. The association of human leukocyte antigens (HLA) allelic diversity with PSS has been poorly investigated. To evaluate the association of allelic polymorphisms of class I HLA-A, -B and -C and class II HLA-DRB1 and -DQB1 with PSS, 100 unrelated patients with PSS and 128 age- and ethnically matched control subjects were recruited from a southern Chinese Han population. Polymorphisms in exons 2-4 for HLA-A, -B, -C loci, exon 2 for HLA-DRB1 and exons 2,3 for HLA-DQB1 were analyzed for association with PSS at allele and haplotype levels. The allele frequency of HLA-C*1402 in PSS patients was significantly higher than that in controls (P = 0.002, OR = 4.12). This association survived the Bonferroni correction (Pc = 0.04). The allele frequency of HLA-B*1301 in PSS patients was lower than that in the control group (P = 0.003, OR = 0.21), although this association did not survive the Bonferroni correction (Pc = 0.16). In PSS patients, the haplotype frequencies of HLA-A*1101~C*1402 and B*5101~C*1402 were higher than that in controls (P = 0.03, OR = 4.44; P = 0.02, OR = 3.20; respectively), while the HLA-B*1301~C*0304 was lower than that in controls (P = 0.007, OR = 0.23), although these associations did not survive the Bonferroni correction (Pc > 0.16). This study for the first time demonstrated that polymorphisms at the HLA-B and HLA-C loci were nominally associated with PSS in the southern Chinese Han population. Our results suggest that HLA-C*1402, A*1101~C*1402 and B*5101~C*1402 might be risk factors for PSS, whereas HLA-B*1301 plus B*1301~C*0304 might be protective factors against PSS, but even larger datasets are required to confirm these findings. Findings from this study provide valuable new clues for investigating the mechanisms and development of new diagnosis and treatment for PSS.
PURPOSE: Each year, over 8,000 corneal transplantation surgeries are performed in China. Unlike developed countries, which have established standard requirements for operative experience for corneal specialists, little information exists on surgical training for keratoplasty in China. The aim of this study was to assess the keratoplasty experience of Chinese corneal specialists and to characterize their surgical patterns. METHODS: One hundred and twenty-one corneal specialists in 16 provinces (65 cities) in China were invited to complete an anonymous survey at the 2014 Chinese Corneal Society annual meeting, which consisted of questions with single or multiple-choice answers. Demographics, the number and type of keratoplasties performed, and the perceived limiting factors for performing keratoplasties were analyzed. RESULTS: An overwhelming 89% response rate was achieved. Of the 108 respondents, 76% worked in tertiary centers, and only 23% held a medical doctorate degree. Furthermore, 69% of the participants had received corneal fellowship training of less than one year. Only 71% were capable of keratoplasties. Among those doing keratoplasty, 68% performed less than 50 keratoplasties each year. Of the same group of keratoplasty surgeons, 88% of corneal specialists capable of keratoplasties had performed penetrating keratoplasties, 87% had performed lamellar keratoplasties, 12% had performed deep anterior lamellar keratoplasties, and 5% had performed Descemet's stripping endothelial keratoplasties. When questioned on the reasons for the low number of keratoplasties performed in China, the respondents deemed the following factors most important: lack of surgical training (71%), a shortage of donor supply (52%), and a lack of curricula (42%). A multivariate logistic regression analysis showed that corneal transplantation capabilities are significantly associated with responders' education levels and training time. CONCLUSION: Keratoplasty surgery experience is suboptimal for Chinese corneal specialists. Penetrating and lamellar keratoplasties are the preferred surgical patterns. Our findings raise concerns about the adequacy of keratoplasty training in China.
The mouse model of laser-induced choroidal neovascularization (CNV) has been used in studies of the exudative form of age-related macular degeneration using both the conventional slit lamp and a new image-guided laser system. A standardized protocol is needed for consistent results using this model, which has been lacking. We optimized details of laser-induced CNV using the image-guided laser photocoagulation system. Four lesions with similar size were consistently applied per eye at approximately double the disc diameter away from the optic nerve, using different laser power levels, and mice of various ages and genders. After 7 days, the mice were sacrificed and retinal pigment epithelium/choroid/sclera was flat-mounted, stained with Isolectin B4, and imaged. Quantification of the area of the laser-induced lesions was performed using an established and constant threshold. Exclusion criteria are described that were necessary for reliable data analysis of the laser-induced CNV lesions. The CNV lesion area was proportional to the laser power levels. Mice at 12-16 weeks of age developed more severe CNV than those at 6-8 weeks of age, and the gender difference was only significant in mice at 12-16 weeks of age, but not in those at 6-8 weeks of age. Dietary intake of omega-3 long-chain polyunsaturated fatty acid reduced laser-induced CNV in mice. Taken together, laser-induced CNV lesions can be easily and consistently applied using the image-guided laser platform. Mice at 6-8 weeks of age are ideal for the laser-induced CNV model.
PURPOSE: To determine whether people with central field loss (CFL) from macular degeneration have improved ability to recognize a particularly difficult spatial configuration embedded in noise, the peripherally-viewed 'ladder contour'. The visibility of these configuration has been linked to general contour integration ability and crowding limitations in peripheral vision. METHODS: We used a trial-based yes-no task. CFL patients and normally-sighted controls performed the task, looking for ladder contours embedded in a field of randomly oriented Gabor patches, at a range of stimulus presentation times (varying stimulus difficulty). Viewing eccentricity in CFL patients was set by their preferred retinal loci (PRLs) and matched artificially in the control group. The contours were presented so as to be tangent to the CFL region, given a patient's PRL location. RESULTS: CFL and normally-sighted groups performed similarly on the task. The only significant determinant of performance was the viewing eccentricity. CONCLUSIONS: CFL patients do not seem to develop any improved ability to recognize ladder contours with their parafoveal retina, which suggests that there is no underlying improvement in contour integration or reduction in crowding limitations in the region of the PRL despite extended daily use.
PURPOSE: Absorbable polyethylene glycol-based synthetic sealant (PEG sealant) polymerizes under xenon illumination and forms a clear, flexible, and firmly adherent hydrogel. The intraocular biocompatibility of PEG sealant and efficacy for closing retinal breaks were evaluated. METHODS: In an in vitro study, retinal detachment with a tear was created in porcine eyecups after vitreous gel removal. Polyethylene glycol-based synthetic sealant was applied to cover the tear and polymerized with a 40-second application of xenon light. Retinal adhesion strength was tested by forcefully squirting balanced salt solution (BSS) onto the retinal tear. Polyethylene glycol-based synthetic sealant was soaked in the BSS, incubated at 37°C, and the pH measured periodically over 72 hours. In an in vivo study, PEG sealant was injected into the vitreous cavity of the left eyes of rabbits. Ophthalmologic examinations were performed and bilateral ERGs were recorded simultaneously before and 28 days after injection. The eyes were enucleated for histological evaluation. RESULTS: Adhesion of PEG sealant to the retina was good in BSS. A forceful squirt of BSS onto the retinal tear covered with PEG sealant did not detach the retina; the retinal tear without PEG sealant detached immediately. The pH of the BSS containing PEG sealant was between 7.2 and 8.2. No inflammatory reaction was observed in the eyes throughout 28 days of follow-up. The ERGs recorded before and after injection showed typical patterns. Histological examinations did not reveal any abnormality or inflammation. CONCLUSIONS: Polyethylene glycol-based synthetic sealant appeared to effectively seal retinal breaks and was not toxic to the eye.
The nervous system is complex not simply because of the enormous number of neurons it contains but by virtue of the specificity with which they are connected. Unraveling this specificity is the task of neuroanatomy. In this endeavor, neuroanatomists have traditionally exploited an impressive array of tools ranging from the Golgi method to electron microscopy. An ideal method for studying anatomy would label neurons that are interconnected, and, in addition, allow expression of foreign genes in these neurons. Fortuitously, nature has already partially developed such a method in the form of neurotropic viruses, which have evolved to deliver their genetic material between synaptically connected neurons while largely eluding glia and the immune system. While these characteristics make some of these viruses a threat to human health, simple modifications allow them to be used in controlled experimental settings, thus enabling neuroanatomists to trace multi-synaptic connections within and across brain regions. Wild-type neurotropic viruses, such as rabies and alpha-herpes virus, have already contributed greatly to our understanding of brain connectivity, and modern molecular techniques have enabled the construction of recombinant forms of these and other viruses. These newly engineered reagents are particularly useful, as they can target genetically defined populations of neurons, spread only one synapse to either inputs or outputs, and carry instructions by which the targeted neurons can be made to express exogenous proteins, such as calcium sensors or light-sensitive ion channels, that can be used to study neuronal function. In this review, we address these uniquely powerful features of the viruses already in the neuroanatomist's toolbox, as well as the aspects of their biology that currently limit their utility. Based on the latter, we consider strategies for improving viral tracing methods by reducing toxicity, improving control of transsynaptic spread, and extending the range of species that can be studied.
Degeneration of photoreceptors is a primary cause of vision loss worldwide, making the underlying mechanisms surrounding photoreceptor cell death critical to developing new treatment strategies. Retinal detachment, characterized by the separation of photoreceptors from the underlying retinal pigment epithelium, is a sight-threatening event that can happen in a number of retinal diseases. The detached photoreceptors undergo apoptosis and programmed necrosis. Given that photoreceptors are nondividing cells, their loss leads to irreversible visual impairment even after successful retinal reattachment surgery. To better understand the underlying disease mechanisms, we analyzed innate immune system regulators in the vitreous of human patients with retinal detachment and correlated the results with findings in a mouse model of retinal detachment. We identified the alternative complement pathway as promoting early photoreceptor cell death during retinal detachment. Photoreceptors down-regulate membrane-bound inhibitors of complement, allowing for selective targeting by the alternative complement pathway. When photoreceptors in the detached retina were removed from the primary source of oxygen and nutrients (choroidal vascular bed), the retina became hypoxic, leading to an up-regulation of complement factor B, a key mediator of the alternative pathway. Inhibition of the alternative complement pathway in knockout mice or through pharmacological means ameliorated photoreceptor cell death during retinal detachment. Our current study begins to outline the mechanism by which the alternative complement pathway facilitates photoreceptor cell death in the damaged retina.
PURPOSE: To report bilateral corneal endothelial cell density (ECD), as well as its correlation with subbasal nerve changes, in patients with unilateral herpes simplex keratitis (HSK). METHODS: Thirty-six eyes of 36 patients with corneal scarring caused by HSK, as well as their respective contralateral clinically unaffected eyes, were prospectively studied and compared with 26 eyes of 26 healthy volunteers. In vivo confocal microscopy and corneal sensation of the central cornea were performed bilaterally in all patients and in one random eye of controls. The ECD and subbasal corneal nerve density, including the lengths of total nerves, main trunks, and branches were evaluated and correlated to central corneal sensation. RESULTS: The ECD was significantly lower in eyes affected with HSK than in controls (2304 ± 578 vs. 2940 ± 370 cells/mm2, P < 0.0001). Surprisingly, lower ECD was also detected in contralateral clinically unaffected eyes (2548 ± 423), compared to controls (P = 0.02). Both affected and contralateral eyes showed decrease in total nerve length, compared to controls (10.0 ± 6.3 vs. 17.6 ± 6.3 vs. 21.9 ± 4.3 mm/mm2, respectively; P < 0.05 for all). The ECD correlated positively with total nerve length (r = 0.39, P = 0.0009) and with corneal sensation (r = 0.31, P = 0.009). CONCLUSIONS: In vivo confocal microscopy findings demonstrated alterations in corneal ECD in both affected and clinically unaffected contralateral eyes of patients with unilateral HSK. Moreover, the positive significant correlation between the ECD and the subbasal nerve density may suggest a potential link between corneal innervation and corneal endothelial cell homeostasis.
PURPOSE: To present a goal-determined methodology for monitoring outcomes after surgery for exotropia. METHODS: The goal-determined metric required surgeons to rank four possible goals preoperatively: (1) binocular potential, (2) restoration of eye contact, (3) diplopia control; and (4) torticollis management. Potential preoperative risk factors were noted. Goal-specific outcomes criteria were applied to the latest sensory-motor examination, 2-6 months after surgery. The medical records of patients who underwent surgery from 2007 to 2012 were retrospectively reviewed with respect to the goal-directed metric. RESULTS: A total of 852 patients were evaluated in the study period: 411 for restoration of eye contact; 347 for binocular potential; 78 for diplopia resolution; and16 for torticollis management. Excellent (62%) or good (16%) outcomes were achieved in 78%. Procedures to resolve diplopia (OR, 6.56; 95% CI, 3.39-12.68) and to restore eye contact (OR, 3.74; 95% CI, 2.65-5.29) were more likely to result in excellent outcomes than procedures to improve binocular potential. Simultaneous surgery for dissociated vertical deviation (OR, 0.38; 95% CI, 0.16-0.92) and preoperative near deviation ≥50(Δ) (OR, 0.27; 95% CI, 0.17-0.42) limited likelihood of an excellent outcome. Outcomes monitored by simultaneous rather than alternate prism and cover test were more likely graded excellent (OR, 5.16; 95% CI, 3.50-7.62). Applying motor criteria from the binocular potential goal to the entire cohort diminished putative outcomes (P < 0.001). CONCLUSIONS: Goal-determined metric monitoring outcomes of exotropia surgery provides outcomes germane to the reason for intervention, enables analysis of risk factors affecting outcomes, and facilitates reporting on heterogeneous populations.
PURPOSE: To establish whether optic nerve head astrocytes express candidate molecules to sense tissue stretch. METHODS: We used conventional PCR, quantitative PCR, and single-cell reverse transcription PCR (RT-PCR) to assess the expression of various members of the transient receptor potential (TRP) channel family and of the recently characterized mechanosensitive channels Piezo1 and 2 in optic nerve head tissue and in single, isolated astrocytes. RESULTS: Most TRP subfamilies (TRPC, TRPM, TRPV, TRPA, and TRPP) and Piezo1 and 2 were expressed in the optic nerve head of the mouse. Quantitative real-time PCR analysis showed that TRPC1, TRPM7, TRPV2, TRPP2, and Piezo1 are the dominant isoforms in each subfamily. Single-cell RT-PCR revealed that many TRP isoforms, TRPC1-2, TRPC6, TRPV2, TRPV4, TRPM2, TRPM4, TRPM6-7, TRPP1-2, and Piezo1-2, are expressed in astrocytes of the optic nerve head, and that most astrocytes express TRPC1 and TRPP1-2. Comparisons of the TRPP and Piezo expression levels between different tissue regions showed that Piezo2 expression was higher in the optic nerve head and the optic nerve proper than in the brain and the corpus callosum. TRPP2 also showed higher expression in the optic nerve head. CONCLUSIONS: Astrocytes in the optic nerve head express multiple putative mechanosensitive channels, in particular the recently identified channels Piezo1 and 2. The expression of putative mechanosensitive channels in these cells may contribute to their responsiveness to traumatic or glaucomatous injury.
Excised redundant, forniceal "conjunctival" tissue from a 67-year-old man who experienced a chemical injury to his OS 25 years earlier was evaluated histopathologically with the hematoxylin-eosin, periodic acid Schiff (PAS) with and without diastase, mucicarmine, and Alcian blue methods. Additional immunoperoxidase testing for gross cystic disease fluid protein-15 (GCDFP-15) was undertaken. Non-keratinizing squamous epithelium composed of 8 to 10 layers of swollen keratinocytes without goblet cells surmounted a variably dense and well-vascularized collagenized lamina propria deep to which, in submucosal fibroadipose tissue, was embedded an accessory gland. The acini of the gland were composed of both GCDFP-15-positive serous cells and mucicarmine-positive goblet cells, indicating they were seromucinous rather than entirely serous, as is characteristic of normal lacrimal glandular tissue. Different features of the surface epithelium, the lamina propria, and the submucosa can separate the conjunctival and oral mucous membranes. A close analysis of the cytologic composition of associated accessory glands can reinforce the correct diagnosis of an oral mucous membrane graft when the past surgical history is unclear, because only serous cells but not mucocytes comprise the lacrimal glandular units.
PURPOSE: To establish the efficacy of topical N-acetylcysteine (NAC) as a treatment to reduce protein deposition on the contact lens surface. METHODS: In this prospective, nonrandomized clinical trial, a total of 10 eyes (9 patients) were enrolled from a single center. All patients had a prior ocular history of either a Boston Keratoprosthesis type I or trichiasis from Stevens-Johnson syndrome, which necessitated full-time contact lens wear. Four visits were required to complete the study. During visit 1, a new contact lens was inserted and a baseline examination was performed. Visit 2 served as the control month, whereas visits 3 and 4 were month 1 and 2 on treatment with 20% NAC. At the end of each visit the contact lens was replaced. The lenses from visit 2 (control month-without NAC) and from visit 3 (treatment month-with NAC) were collected for proteomic analysis. The main outcome measures were to quantify protein deposition, as well as to assess the visual acuity and ocular surface symptoms before and after treatment. RESULTS: Topical NAC resulted in a 20% decrease in protein deposition. This correlated with a trend for improvement in visual acuity and increased subjective improvement in vision at month 1 (P=0.0153) and 2 (P=0.0016). CONCLUSIONS: NAC reduced protein deposition, decreased ocular surface symptoms, and improved contact lens transparency, thereby providing increased optical clarity.
PURPOSE: There is a need for automated retinal optical coherence tomography (OCT) image analysis tools for quantitative measurements in small animals. Some image processing techniques for retinal layer analysis have been developed, but reports about how useful those techniques are in actual animal studies are rare. This paper presents the use of a retinal layer detection method we developed in an actual mouse study that involves wild type and mutated mice carrying photoreceptor degeneration. METHODS: Spectral domain OCT scanning was performed by four experimenters over 12 months on 45 mouse eyes that were wild-type, deficient for ephrin-A2 and ephrin-A3, deficient for rhodopsin, or deficient for rhodopsin, ephrin-A2 and ephrin-A3. The thickness of photoreceptor complex between the outer plexiform layer and retinal pigment epithelium was measured on two sides of the optic disc as the biomarker of retinal degeneration. All the layer detection results were visually confirmed. RESULTS: Overall, 96% (8519 out of 9000) of the half-side images were successfully processed using our technique in a semi-automatic manner. There was no significant difference in success rate between mouse lines (p = 0.91). Based on a human observer's rating of image quality for images successfully and unsuccessfully processed, the odds ratios for 'easily visible' images and 'not clear' images to be successfully processed is 62 and 4, respectively, against 'indistinguishable' images. Thickness of photoreceptor complex was significantly different across the quadrants compared (p < 0.001). It was also found that the average thickness based on 4-point sparse sampling was not significantly different from the full analysis, while the range of differences between the two methods could be up to about 6 μm or 16% for individual eyes. Differences between mouse lines and progressive thickness reduction were revealed by both sampling measures. CONCLUSIONS: Although the thickness of the photoreceptor complex layer is not even, manual sparse sampling may be as sufficiently accurate as full analysis in some studies such as ours, where the error of sparse sampling was much smaller than the effect size of rhodopsin deficiency. It is also suggested that the image processing method can be useful in actual animal studies. Even for images poorly visible to human eyes the image processing method still has a good chance to extract the complex layer.
OBJECTIVE: In angiogenesis, circulating mononuclear cells are recruited to vascular lesions; however, the underlying mechanisms are poorly understood. APPROACH AND RESULTS: Here, we characterize the functional role of protein tyrosine kinase 7 (PTK7)-expressing CD11b(+) mononuclear cells in vitro and in vivo using a mouse model of angiogenesis. Although the frequencies of PTK7(+)CD11b(+) cells in the bone marrow remained similar after vascular endothelial growth factor-A-induced neovascularization, we observed an 11-fold increase in the cornea. Importantly, vascular endothelial growth factor-A-induced chemotaxis of PTK7(+) cells was mediated by vascular endothelial growth factor receptor 2. In a coculture with endothelial cells, PTK7(+)CD11b(+) cells stabilized the vascular network for 2 weeks by expressing high levels of angiopoietin-1. The enhanced vascular stability was abolished by knockdown of angiopoietin-1 in PTK7(+)CD11b(+) cells and could be restored by angiopoietin-1 treatment. CONCLUSIONS: We conclude that PTK7 expression in perivascular mononuclear cells induces vascular endothelial growth factor receptor 2 and angiopoietin-1 expression and thus contributes to vascular stabilization in angiogenesis.
PURPOSE: To evaluate the safety and efficacy of topical loteprednol etabonate (LE) 0.5% compared with cyclosporine A (CsA) 0.05% for the prophylaxis and treatment of dry eye syndrome (DES) after hematopoietic stem cell transplantation (HSCT). METHODS: Seventy-five patients were randomized to LE (n = 76 eyes of 38 patients) or CsA (n = 74 eyes of 37 patients) pre-HSCT. Lissamine green and fluorescein staining, tear break-up time, tear osmolarity (Osm), Schirmer score (Sch), intraocular pressure, visual acuity, and Ocular Surface Disease Index were assessed pre-HSCT, 3, 6, 9, and 12 months post-HSCT. RESULTS: There were no differences in DES incidence (P = 0.22; log-rank test) or progression (P = 0.41; log-rank test) between the 2 treatment arms during the course of the study. Among eyes with no DES at enrollment, the Kaplan-Meier analysis yielded a 90% rate of DES development in cyclosporine-treated eyes and a 79% rate of DES development in LE-treated eyes by 12 months post-HSCT. The Kaplan-Meier analysis of eyes with DES at enrollment demonstrated a 38% rate of disease progression among cyclosporine-treated eyes and a 26% rate of disease progression among loteprednol-treated eyes by 12 months. No patient in either group had an elevation of 10 mm Hg or greater from baseline at any study visit, and no patients had their treatment discontinued for elevation in intraocular pressure. CONCLUSIONS: Pre-HSCT initiation of LE 0.5% appears to be safe and may be as effective as CsA 0.5% for the treatment and prophylaxis of DES following HSCT.
IMPORTANCE: To facilitate comparative clinical outcome research in low vision rehabilitation, we must use patient-centered measurements that reflect clinically meaningful changes in visual ability. OBJECTIVE: To quantify the effects of currently provided low vision rehabilitation (LVR) on patients who present for outpatient LVR services in the United States. DESIGN, SETTING, AND PARTICIPANTS: Prospective, observational study of new patients seeking outpatient LVR services. From April 2008 through May 2011, 779 patients from 28 clinical centers in the United States were enrolled in the Low Vision Rehabilitation Outcomes Study. The Activity Inventory, a visual function questionnaire, was administered to measure overall visual ability and visual ability in 4 functional domains (reading, mobility, visual motor function, and visual information processing) at baseline and 6 to 9 months after usual LVR care. The Geriatric Depression Scale, Telephone Interview for Cognitive Status, and Medical Outcomes Study 36-Item Short-Form Health Survey physical functioning questionnaires were also administered to measure patients' psychological, cognitive, and physical health states, respectively, and clinical findings of patients were provided by study centers. MAIN OUTCOMES AND MEASURES: Mean changes in the study population and minimum clinically important differences in the individual in overall visual ability and in visual ability in 4 functional domains as measured by the Activity Inventory. RESULTS: Baseline and post-rehabilitation measures were obtained for 468 patients. Minimum clinically important differences (95% CIs) were observed in nearly half (47% [95% CI, 44%-50%]) of patients in overall visual ability. The prevalence rates of patients with minimum clinically important differences in visual ability in functional domains were reading (44% [95% CI, 42%-48%]), visual motor function (38% [95% CI, 36%-42%]), visual information processing (33% [95% CI, 31%-37%]), and mobility (27% [95% CI, 25%-31%]). The largest average effect size (Cohen d = 0.87) for the population was observed in overall visual ability. Age (P = .006) was an independent predictor of changes in overall visual ability, and logMAR visual acuity (P = .002) was predictive of changes in visual information processing. CONCLUSIONS AND RELEVANCE: Forty-four to fifty percent of patients presenting for outpatient LVR show clinically meaningful differences in overall visual ability after LVR, and the average effect sizes in overall visual ability are large, close to 1 SD.
Primary open angle glaucoma (POAG), a major cause of blindness worldwide, is a complex disease with a significant genetic contribution. We performed Exome Array (Illumina) analysis on 3504 POAG cases and 9746 controls with replication of the most significant findings in 9173 POAG cases and 26 780 controls across 18 collections of Asian, African and European descent. Apart from confirming strong evidence of association at CDKN2B-AS1 (rs2157719 [G], odds ratio [OR] = 0.71, P = 2.81 × 10(-33)), we observed one SNP showing significant association to POAG (CDC7-TGFBR3 rs1192415, ORG-allele = 1.13, Pmeta = 1.60 × 10(-8)). This particular SNP has previously been shown to be strongly associated with optic disc area and vertical cup-to-disc ratio, which are regarded as glaucoma-related quantitative traits. Our study now extends this by directly implicating it in POAG disease pathogenesis.
