OBJECTIVE: Nonarteritic anterior ischemic optic neuropathy (NAION) is a devastating ocular condition causing permanent vision loss. Little is known about risk factors for developing this disease. We assessed demographic, systemic, and ocular factors associated with NAION. DESIGN: Retrospective longitudinal cohort study. PARTICIPANTS: Beneficiaries between 40 and 75 years old without NAION at baseline enrolled in a large U.S. managed care network. METHODS: Enrollees were monitored continuously for ≥2 years between 2001 and 2014 to identify those newly diagnosed with NAION (International Classification of Diseases, 9th Revision, Clinical Modification [ICD-9-CM] code 377.41). All persons were under ophthalmic surveillance and all cases had ≥1 confirmatory ICD-9-CM code for NAION during follow-up. MAIN OUTCOME MEASURES: Multivariable Cox regression modeling was used to generate hazard ratios (HRs) with 95% confidence intervals (CIs) to describe the statistical relationship between selected demographic characteristics, systemic and ocular conditions, and the hazard of developing NAION. RESULTS: Of 1 381 477 eligible enrollees, 977 (0.1%) developed NAION during a mean ± standard deviation (SD) follow-up of 7.8±3.1 years. The mean ± SD age for NAION cases at the index date was 64.0±9.2 years vs. 58.4±9.4 years for the remainder of the beneficiaries. After adjustment for confounding factors, each additional year older was associated with a 2% increased hazard of NAION (HR = 1.02; 95% CI: 1.01-1.03). Female subjects had a 36% decreased hazard of developing NAION (HR = 0.64; 95% CI: 0.55-0.74) compared with male subjects. Compared with whites, Latinos had a 46% decreased hazard of developing NAION (HR = 0.54; 95% CI: 0.36-0.82), whereas African ancestry was not significantly associated with NAION (HR = 0.91; 95% CI: 0.72-1.15). Systemic diseases associated with NAION included hypertension (HR = 1.62; 95% CI: 1.26-2.07) and hypercoagulable states (HR = 2.46; 95% CI: 1.51-4.00). Although diabetes mellitus (DM) was not significantly associated with NAION compared with those without DM (P = 0.45), patients with end-organ involvement from DM had a 27% increased hazard of NAION relative to those with uncomplicated DM (HR = 1.27; 95% CI: 1.01-1.59). Ocular diseases associated with NAION were age-related macular degeneration (HR = 1.29; 95% CI: 1.08-1.54) and retinal vein occlusion (HR = 3.94; 95% CI: 3.11-4.99). CONCLUSIONS: Our study identified several modifiable risk factors that may be associated with NAION. Should future studies confirm these findings, they may offer opportunities to prevent or treat this debilitating condition.
- Home
- 2016
2016
Current techniques for repairing large eyelid colobomas require preparation of other tissue sites and occasionally more than one procedure. We present a technique that requires only one procedure and is limited to the colobomatous eyelid; in addition, it is specifically designed to help avoid postoperative astigmatic and obstructive amblyopia. Outcomes are demonstrated in 3 cases of hemifacial microsomia. Large colobomas on the upper eyelid can be successfully and aesthetically repaired with only one procedure, incising only the congenitally abnormal eyelid.
PURPOSE: To determine whether hyperreflective foci (HF) and macular thickness on spectral domain ocular coherence tomography are associated with lipid levels in patients with Type 2 diabetes. METHODS: Two hundred and thirty-eight participants from four sites had fundus photographs and spectral domain ocular coherence tomography images graded for hard exudates and HF, respectively. Regression models were used to determine the association between serum lipid levels and 1) presence of HF and hard exudates and 2) central subfield macular thickness, central subfield macular volume, and total macular volume. RESULTS: All patients with hard exudates on fundus photographs had corresponding HF on spectral domain ocular coherence tomography, but 57% of patients with HF on optical coherence tomography did not have hard exudates detected in their fundus photographs. Presence of HF was associated with higher total cholesterol (odds ratio = 1.13, 95% confidence interval = 1.01-1.27, P = 0.03) and higher low-density lipoprotein levels (odds ratio = 1.17, 95% confidence interval = 1.02-1.35, P = 0.02) in models adjusting for other risk factors. The total macular volume was also associated with higher total cholesterol (P = 0.009) and triglyceride (P = 0.02) levels after adjusting for other risk factors. CONCLUSION: Higher total and low-density lipoprotein cholesterol were associated with presence of HF on spectral domain ocular coherence tomography. Total macular volume was associated with higher total cholesterol and triglyceride levels.
Specific lineages of the commensal bacterium Enterococcus faecium belonging to CC17, especially ST412, have been isolated from patients in several hospitals worldwide and harbor antibiotic resistance genes and virulence factors. Here, we report a high-quality draft genome sequence and highlight features of E. faecium VRE16, a representative of this ST.
OBJECTIVES: To assess resident cataract surgery outcomes at an academic teaching institution using 2 Physician Quality Reporting System (PQRS) cataract measures, which are intended to serve as a proxy for quality of surgical care. DESIGN: A retrospective review comparing cataract surgery outcomes of resident and attending surgeries using 2 PQRS measures: (1) 20/40 or better best-corrected visual acuity following cataract surgery and (2) complications within 30 days following cataract surgery requiring additional surgical procedures. SETTING: An academic ophthalmology center. PARTICIPANTS: A total of 2487 surgeries performed at the Massachusetts Eye and Ear Infirmary from January 1, 2011 to December 31, 2012 were included in this study. RESULTS: Of all 2487 cataract surgeries, 98.95% achieved a vision of at least 20/40 at or before 90 days, and only 0.64% required a return to the operating room for postoperative complications. Of resident surgeries, 98.9% (1370 of 1385) achieved 20/40 vision at or before 90 days follow-up. Of attending surgeries, 99.0% (1091 of 1102) achieved 20/40 vision at or before 90 days (p = 1.00). There were no statistically significant differences between resident and attending cases regarding postoperative complications needing a return to the operating room (i.e., 0.65%, or 9 of 1385 resident cases vs 0.64%, or 7 of 1102 attending cases; p = 1.00). CONCLUSIONS: Using PQRS Medicare cataract surgery criteria, this study establishes new benchmarks for cataract surgery outcomes at a teaching institution and supplemental measure for assessing resident surgical performance. Excellent cataract outcomes were achieved at an academic teaching institution, with results exceeding Medicare thresholds of 50%. There appears to be no significant difference in supervised trainee and attending cataract surgeon outcomes using 2 PQRS measures currently used by Medicare to determine physician reimbursement and quality of care.
The cornea is the outermost layer of the eye and is a vital component of focusing incoming light on the retina. Central corneal thickness (CCT) is now recognized to have a significant role in ocular health and is a risk factor for various ocular diseases, such as keratoconus and primary open angle glaucoma. Most previous genetic studies utilized European and Asian subjects to identify genetic loci associated with CCT. Minority populations, such as Latinos, may aid in identifying additional loci and improve our understanding of the genetic architecture of CCT. In this study, we conducted a genome-wide association study (GWAS) in Latinos, a traditionally understudied population in genetic research, to further identify loci contributing to CCT. Study participants were genotyped using either the Illumina OmniExpress BeadChip (∼730K markers) or the Illumina Hispanic/SOL BeadChip (∼2.5 million markers). All study participants were 40 years of age and older. We assessed the association between individual single nucleotide polymorphisms (SNPs) and CCT using linear regression, adjusting for age, gender, and principal components of genetic ancestry. To expand genomic coverage and to interrogate additional SNPs, we imputed SNPs from the 1000 Genomes Project reference panels. We identified a novel SNP, rs10453441 (P = 6.01E-09), in an intron of WNT7B that is associated with CCT. Furthermore, WNT7B is expressed in the human cornea. We also replicated 11 previously reported loci, including IBTK, RXRA-COL5A1, COL5A1, FOXO1, LRRK1, and ZNF469 (P < 1.25E-3). These findings provide further insight into the genetic architecture of CCT and illustrate that the use of minority groups in GWAS will help identify additional loci.
Goblet cells within the conjunctival epithelium are specialized cells that secrete mucins onto the surface of the eye. Recent research has demonstrated new characteristics of the cells, including factors influencing their differentiation, their gene products and their functions at the ocular surface. The following review summarizes the newly discovered aspects of the role of Spdef, a member of the Ets transcription factor family in conjunctival goblet cell differentiation, the newly discovered goblet cell products including claudin2, the Wnt inhibitor Frzb, and the transmembrane mucin Muc16. The current concepts of conjunctival goblet cell function, including debris removal and immune surveillance are reviewed, as are changes in the goblet cell population in ocular surface diseases. Major remaining questions regarding conjunctival cell biology are discussed.
PURPOSE: Accumulation of oxidized phospholipids/lipoproteins with age is suggested to contribute to the pathogenesis of AMD. We investigated the effect of oxidized LDL (ox-LDL) on human RPE cells. METHODS: Primary human fetal RPE (hf-RPE) and ARPE-19 cells were treated with different doses of LDL or ox-LDL. Assessment of cell death was measured by lactate dehydrogenase release into the conditioned media. Barrier function of RPE was assayed by measuring transepithelial resistance. Lysosomal accumulation of ox-LDL was determined by immunostaining. Expression of CD36 was determined by RT-PCR; protein blot and function was examined by receptor blocking. NLRP3 inflammasome activation was assessed by RT-PCR, protein blot, caspase-1 fluorescent probe assay, and inhibitor assays. RESULTS: Treatment with ox-LDL, but not LDL, for 48 hours caused significant increase in hf-RPE and ARPE-19 (P < 0.001) cell death. Oxidized LDL treatment of hf-RPE cells resulted in a significant decrease in transepithelial resistance (P < 0.001 at 24 hours and P < 0.01 at 48 hours) relative to LDL-treated and control cells. Internalized ox-LDL was targeted to RPE lysosomes. Uptake of ox-LDL but not LDL significantly increased CD36 protein and mRNA levels by more than 2-fold. Reverse transcription PCR, protein blot, and caspase-1 fluorescent probe assay revealed that ox-LDL treatment induced NLRP3 inflammasome when compared with LDL treatment and control. Inhibition of NLRP3 activation using 10 μM isoliquiritigenin significantly (P < 0.001) inhibited ox-LDL induced cytotoxicity. CONCLUSIONS: These data are consistent with the concept that ox-LDL play a role in the pathogenesis of AMD by NLRP3 inflammasome activation. Suppression of NLRP3 inflammasome activation could attenuate RPE degeneration and AMD progression.
Dendritic cells (DCs) are antigen-presenting cells that normally play a critical role in stimulating T-cell-dependent immune responses. However, tolerogenic DCs (CD11cMHC-IICD80CD86) induce immune tolerance by stimulating regulatory T cells (Tregs: CD4CD25Foxp3). Although tolerogenic DCs are used to treat autoimmune diseases and to prevent transplantation rejection, the mechanisms by which they regulate alloimmunity are poorly understood. Here, we review our previous studies aiming to elucidate the mechanisms involved in immune rejection of corneal allografts using a corneal transplant model. We found that donor-derived tolerogenic DCs significantly prolonged corneal allograft survival by suppressing indirect allosensitization. We also reported the precise distribution of intraepithelial corneal DCs, termed Langerhans cells (LCs: CD11cLangerinMHC-II) in the cornea, which we maintain play a critical role in regulating corneal immunity. By confocal microscopy, we constructed 3-dimensional images of corneal LCs, which demonstrated that their cell bodies are present in the basal cell layer of the corneal epithelium. Furthermore, LC dendrites extend toward the ocular surface, but do not connect to epithelial tight junctions, indicating that they cannot directly interact with ocular surface antigens. We confirm the potential of DC therapy for corneal graft rejection and report the function of intraepithelial DCs (LCs) in the normal cornea.
The neonatal period of very preterm infants is often characterized by a difficult adjustment to extrauterine life, with an inadequate nutrient supply and insufficient levels of growth factors, resulting in poor growth and a high morbidity rate. Long-term multisystem complications include cognitive, behavioral, and motor dysfunction as a result of brain damage as well as visual and hearing deficits and metabolic disorders that persist into adulthood. Insulinlike growth factor 1 (IGF-1) is a major regulator of fetal growth and development of most organs especially the central nervous system including the retina. Glucose metabolism in the developing brain is controlled by IGF-1 which also stimulates differentiation and prevents apoptosis. Serum concentrations of IGF-1 decrease to very low levels after very preterm birth and remain low for most of the perinatal development. Strong correlations have been found between low neonatal serum concentrations of IGF-1 and poor brain and retinal growth as well as poor general growth with multiorgan morbidities, such as intraventricular hemorrhage, retinopathy of prematurity, bronchopulmonary dysplasia, and necrotizing enterocolitis. Experimental and clinical studies indicate that early supplementation with IGF-1 can improve growth in catabolic states and reduce brain injury after hypoxic/ischemic events. A multicenter phase II study is currently underway to determine whether intravenous replacement of human recombinant IGF-1 up to normal intrauterine serum concentrations can improve growth and development and reduce prematurity-associated morbidities.
Ocular neovascularization is a leading cause of blindness in proliferative retinopathy. Small non-coding RNAs (sncRNAs) play critical roles in both vascular and neuronal development of the retina through post-transcriptional regulation of target gene expression. To identify the function and therapeutic potential of sncRNAs in retinopathy, we assessed the expression profile of retinal sncRNAs in a mouse model of oxygen-induced retinopathy (OIR) with pathologic proliferation of neovessels. Approximately 2% of all analyzed sncRNAs were significantly altered in OIR retinas compared with normoxic controls. Twenty three microRNAs with substantial up- or down-regulation were identified, including miR-351, -762, -210, 145, -155, -129-5p, -150, -203, and -375, which were further analyzed for their potential target genes in angiogenic, hypoxic, and immune response-related pathways. In addition, nineteen small nucleolar RNAs also revealed differential expression in OIR retinas compared with control retinas. A decrease of overall microRNA expression in OIR retinas was consistent with reduced microRNA processing enzyme Dicer, and increased expression of Alu element in OIR. Together, our findings elucidated a group of differentially expressed sncRNAs in a murine model of proliferative retinopathy. These sncRNAs may exert critical post-transcriptional regulatory roles in regulating pathological neovascularization in eye diseases.
In a fibroblast colony model of corneal stromal development, we asked how physiological tension influences the patterning dynamics of fibroblasts and the orientation of deposited extracellular matrix (ECM). Using long-term live-cell microscopy, enabled by an optically accessible mechanobioreactor, a primary human corneal fibroblast colony was cultured on three types of substrates: a mechanically biased, loaded, dense, disorganized collagen substrate (LDDCS), a glass coverslip, and an unloaded, dense, disorganized collagen substrate (UDDCS). On LDDCS, fibroblast orientation and migration along a preferred angle developed early, cell orientation was correlated over long distances, and the colony pattern was stable. On glass, fibroblast orientation was poorly correlated, developed more slowly, and colony patterns were metastable. On UDDCS, cell orientation was correlated over shorter distances compared with LDDCS specimens. On all substrates, the ECM pattern reflected the cell pattern. In summary, mechanically biasing the collagen substrate altered the early migration behavior of individual cells, leading to stable emergent cell patterning, which set the template for newly synthesized ECM.
Histological studies from autopsy specimens have characterized hard exudates as a composition of lipid-laden macrophages or noncellular materials including lipid and proteinaceous substances (hyaline substances). However, the characteristics of hard exudates in living patients have not been examined due to insufficient resolution of existing equipment. In this study, we used adaptive optics scanning laser ophthalmoscopy (AO-SLO) to examine the characteristics of hard exudates in patients with retinal vascular diseases. High resolution imaging using AO-SLO enables morphological classification of retinal hard exudates into two types, which could not be distinguished either on fundus examination or by spectral domain optical coherence tomography (SD-OCT). One, termed a round type, consisted of an accumulation of spherical particles (average diameter of particles: 26.9 ± 4.4 μm). The other, termed an irregular type, comprised an irregularly shaped hyper-reflective deposition. The retinal thickness in regions with round hard exudates was significantly greater than the thickness in regions with irregular hard exudates (P = 0.01 →0.02). This differentiation of retinal hard exudates in patients by AO-SLO may help in understanding the pathogenesis and clinical prognosis of retinal vascular diseases.
Glaucoma is an optic neuropathy that is characterized by the progressive degeneration of the optic nerve, leading to visual impairment. Glaucoma is the main cause of irreversible blindness worldwide, but typically remains asymptomatic until very severe. Open-angle glaucoma comprises the majority of cases in the United States and western Europe, of which, primary open-angle glaucoma (POAG) is the most common type. By contrast, in China and other Asian countries, angle-closure glaucoma is highly prevalent. These two types of glaucoma are characterized based on the anatomic configuration of the aqueous humour outflow pathway. The pathophysiology of POAG is not well understood, but it is an optic neuropathy that is thought to be associated with intraocular pressure (IOP)-related damage to the optic nerve head and resultant loss of retinal ganglion cells (RGCs). POAG is generally diagnosed during routine eye examination, which includes fundoscopic evaluation and visual field assessment (using perimetry). An increase in IOP, measured by tonometry, is not essential for diagnosis. Management of POAG includes topical drug therapies and surgery to reduce IOP, although new therapies targeting neuroprotection of RGCs and axonal regeneration are under development.
Primary open angle glaucoma (POAG) is a complex disease and is one of the major leading causes of blindness worldwide. Genome-wide association studies have successfully identified several common variants associated with glaucoma; however, most of these variants only explain a small proportion of the genetic risk. Apart from the standard approach to identify main effects of variants across the genome, it is believed that gene-gene interactions can help elucidate part of the missing heritability by allowing for the test of interactions between genetic variants to mimic the complex nature of biology. To explain the etiology of glaucoma, we first performed a genome-wide association study (GWAS) on glaucoma case-control samples obtained from electronic medical records (EMR) to establish the utility of EMR data in detecting non-spurious and relevant associations; this analysis was aimed at confirming already known associations with glaucoma and validating the EMR derived glaucoma phenotype. Our findings from GWAS suggest consistent evidence of several known associations in POAG. We then performed an interaction analysis for variants found to be marginally associated with glaucoma (SNPs with main effect p-value <0.01) and observed interesting findings in the electronic MEdical Records and GEnomics Network (eMERGE) network dataset. Genes from the top epistatic interactions from eMERGE data (Likelihood Ratio Test i.e. LRT p-value <1e-05) were then tested for replication in the NEIGHBOR consortium dataset. To replicate our findings, we performed a gene-based SNP-SNP interaction analysis in NEIGHBOR and observed significant gene-gene interactions (p-value <0.001) among the top 17 gene-gene models identified in the discovery phase. Variants from gene-gene interaction analysis that we found to be associated with POAG explain 3.5% of additional genetic variance in eMERGE dataset above what is explained by the SNPs in genes that are replicated from previous GWAS studies (which was only 2.1% variance explained in eMERGE dataset); in the NEIGHBOR dataset, adding replicated SNPs from gene-gene interaction analysis explain 3.4% of total variance whereas GWAS SNPs alone explain only 2.8% of variance. Exploring gene-gene interactions may provide additional insights into many complex traits when explored in properly designed and powered association studies.
Importance: Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli are highly antibiotic resistant, and primary ocular infection by ESBL E coli has rarely been reported. A novel mutation conferring phagocytosis resistance would position a strain well to infect the cornea. Observations: A woman with recurrent keratitis presented with a corneal ulcer, which was culture positive for ESBL E coli. Resistant to nearly all other antimicrobials, the infection was treated with amikacin and polymyxin B-trimethoprim, and the ulcer resolved over 3 weeks. Analysis of the E coli genome showed it to belong to multilocus sequence type 131 (ST131). This isolate was found to possess a novel deletion in yrfF, an essential regulator of bacterial capsule synthesis. Disruption of yrfF, which confers mucoidy and increased virulence, has not been previously observed in ESBL E coli from any infection site. This novel variant was experimentally proven to cause the mucoid phenotype, and corresponding resistance to phagocytic killing. Conclusions and Relevance: Increased resistance to immune clearance in an ESBL E coli lineage already known for its virulence is an unsettling development. This phenotype, which likely positioned it as an unusual cause of corneal ulcer, can be easily recognized in the laboratory, which should help limit its spread.
Accumulating evidence shows that IL-17 is critically involved in diverse autoimmune diseases. However, its effect on the induction and progression of the humoral immune response is not fully understood. Using a preclinical model of IL-17-mediated dry eye disease, we demonstrate that upon encountering both the BCR and a secondary T cell signal, IL-17 can enhance B cell proliferation and germinal center formation in dry eye disease mice, suggesting that a stable Ag-dependent T-B cell interaction is required. Additionally, IL-17 also promotes the differentiation of B cells into isotype-switched B cells and plasma cells. Furthermore, we show that Th17 cells are more effective than Th1 cells to provide B cell help. Reduced B cell response correlates with significant reduction in clinical disease after in vivo IL-17A neutralization. In conclusion, our findings demonstrate a new role of IL-17 in promoting autoimmunity in part through directly enhancing B cell proliferation, differentiation, and plasma cell generation.
Evolving research has provided evidence that noninvasive electrical stimulation (ES) of the eye may be a promising therapy for either preserving or restoring vision in several retinal and optic nerve diseases. In this review, we focus on minimally invasive strategies for the delivery of ES and accordingly summarize the current literature on transcorneal, transorbital, and transpalpebral ES in both animal experiments and clinical studies. Various mechanisms are believed to underlie the effects of ES, including increased production of neurotrophic agents, improved chorioretinal blood circulation, and inhibition of proinflammatory cytokines. Different animal models have demonstrated favorable effects of ES on both the retina and the optic nerve. Promising effects of ES have also been demonstrated in clinical studies; however, all current studies have a lack of randomization and/or a control group (sham). There is thus a pressing need for a deeper understanding of the underlying mechanisms that govern clinical success and optimization of stimulation parameters in animal studies. In addition, such research should be followed by large, prospective, clinical studies to explore the full potential of ES. Through this review, we aim to provide insight to guide future research on ES as a potential therapy for improving vision.
PURPOSE: To compare microcatheter-assisted trabeculotomy with standard rigid probe trabeculotomy for the treatment of childhood glaucoma. METHODS: The early postoperative (12 months) results of microcatheter-assisted trabeculotomy (group 1) performed by single surgeon were retrospectively compared with those of rigid probe trabeculotomy (group 2) performed by the same surgeon in patients treated for childhood glaucoma. Success was defined as an intraocular pressure (IOP) <21 mm Hg with at least a 30% reduction from preoperative IOP with (qualified success) or without (complete success) the use of anti-glaucoma medication. RESULTS: A total of 43 eyes of 36 patients were included. Mean IOP in group 1 was significantly lower than that in group 2 at 6 months (17.0±5.1 vs 22.5±9.8; p=0.042), 9 months (16.3±5.0 vs 21.6±9.6; p=0.009) and 12 months (14.8±2.5 vs 19.0±7.1; p=0.049) postoperatively. The mean percentage reduction in IOP from preoperative to the last postoperative follow-up was greater in group 1 (47.3±17.7%) than in group 2 (34.2±21.9%) (p=0.036). group 1 demonstrated an 81.0% complete and 86.4% qualified success rate, exceeding the 51.6% complete (p=0.060) and 61.9% qualified (p=0.037) success rate of group 2. There were no long-term complications in either group, but choroidal detachment occurred in one eye in group 2. CONCLUSION: Microcatheter-assisted circumferential trabeculotomy is a more effective treatment and is as safe as traditional trabeculotomy with a rigid probe for primary congenital glaucoma in the early postoperative course. TRIAL REGISTRATION NUMBER: ChiCTR-OCC-15005789, Results.
The retina is part of the central nervous system and both the retina as well as the brain can suffer from severe damage after very preterm birth. Retinopathy of prematurity is one of the major causes of blindness in these children and brain neuronal impairments including cognitive defects, cerebral palsy and intraventricular hemorrhage (IVH) are also complications of very preterm birth. Insulin-like growth factor 1 (IGF-1) acts to promote proliferation, maturation, growth and survival of neural cells. Low levels of circulating IGF-1 are associated with ROP and defects in the IGF-1 gene are associated with CNS disorders including learning deficits and brain growth restriction. Treatment of preterm infants with recombinant IGF-1 may potentially prevent ROP and CNS disorders. This review compares the role of IGF-1 in ROP and CNS disorders. A recent phase 2 study showed a positive effect of IGF-1 on the severity of IVH but no effect on ROP. A phase 3 trial is planned.
Diabetic retinopathy (DR) is the leading cause of blindness in the working-age population in developed countries, and its prevalence will increase as the global incidence of diabetes grows exponentially. DR begins with an early nonproliferative stage in which retinal blood vessels and neurons degenerate as a consequence of chronic hyperglycemia, resulting in vasoregression and persistent retinal ischemia, metabolic disequilibrium, and inflammation. This is conducive to overcompensatory pathological neovascularization associated with advanced proliferative DR. Although DR is considered a microvascular complication, the retinal microvasculature is intimately associated with and governed by neurons and glia; neurodegeneration, neuroinflammation, and dysregulation of neurovascular cross talk are responsible in part for vascular abnormalities in both early nonproliferative DR and advanced proliferative DR. Neuronal activity directly regulates microvascular dilation and blood flow in the process of neurovascular coupling. Retinal neurons also secrete guidance cues in response to injury, ischemia, or metabolic stress that may either promote or suppress vascular outgrowth, either alleviating or exacerbating DR, contingent on the stage of disease and retinal microenvironment. Neurodegeneration, impaired neurovascular coupling, and dysregulation of neuronal guidance cues are key events in the pathogenesis of DR, and correcting these events may prevent or delay development of advanced DR. The review discusses the mechanisms of neurovascular cross talk and its dysregulation in DR, and their potential therapeutic implications.
PURPOSE OF REVIEW: Nonarteritic anterior ischemic optic neuropathy (NAION) is the most common cause of acute optic nerve injury, and frequently presents to comprehensive ophthalmologists. We review the typical and atypical clinical features and current literature on various treatment modalities for NAION. RECENT FINDINGS: The epidemiology and clinical presentation of this disease can be variable, making a definitive diagnosis difficult in many cases. In addition, the differential diagnoses for this disorder, although comprising much less prevalent entities, are quite broad and can have substantial systemic implications if these alternatives go unrecognized. NAION has many systemic associations and comorbidities that deserve inquiry when the diagnosis is made. There are currently no widely accepted, evidence-based treatments for NAION. All recommendations made to patients to reduce their risk of sequential eye involvement, including avoidance of potential nocturnal hypotension, erectile dysfunction medication, and treatment of obstructive sleep apnea, have theoretical bases. SUMMARY: NAION is a common cause of acute vision loss in adult and older patients, and thus, comprehensive ophthalmologists need to be able to diagnose and appropriately manage this disorder. We anticipate fruitful results from current and future trials aimed at neuroprotection in the affected eye and prevention of sequential eye involvement.
PURPOSE OF REVIEW: Papilledema associated with idiopathic intracranial hypertension (IIH) may result in irreversible, progressive visual loss. The development of tools for the evaluation of pediatric patients with IIH is particularly relevant as many patients may not be able to comply with the detailed clinical evaluation utilized in adults for the treatment and management of this disease. The purpose of this review is to summarize relevant articles on the diagnostic tools used in evaluation and management of pediatric IIH. RECENT FINDINGS: Studies suggest that characteristic pediatric IIH MRI findings include empty sella turcica, decreased pituitary gland size, optic nerve tortuosity, perioptic subarachnoid space enlargement, posterior globe flattering, and intraocular protrusion of the optic nerve head. On optical coherence tomography (OCT), increased retinal nerve fiber layer and macular thickness may be observed in children with IIH compared with controls. The retinal nerve fiber layer thickness seems to coincide with the severity of papilledema and may be more sensitive than funduscopy for detecting optic nerve head elevation. Research on ultrasound of the optic nerve shows increased size of the optic nerve sheath diameter in pediatric IIH patients, and this may correlate with increased opening pressure on lumbar puncture. SUMMARY: There appears to be characteristic findings on MRI, OCT, and ultrasound studies in pediatric IIH patients. Although ultrasound is rarely used for monitoring these patients nowadays, MRI and OCT can be useful in the evaluation and management of these individuals.
