- Home
- Diabetic Eye Disease
Diabetic Eye Disease
Fenofibrate, a specific agonist of peroxisome proliferator-activated receptor alpha (PPARα), displays robust therapeutic effects on diabetic retinopathy (DR) in type 2 diabetic patients. Our recent studies have shown that PPARα is down-regulated in the diabetic retina, which contributes to the pathogenesis of DR. However, the mechanism for diabetes-induced down-regulation of PPARα remains unknown. We investigated the role of microRNA-21 (miR-21) in regulating PPARα in DR. MiR-21 was over-expressed, while PPARα levels were decreased in the retina of db/db mice, a type 2 diabetic model. Such alterations were also observed in palmitate-treated retinal endothelial cells. MiR-21 targeted PPARα by inhibiting its mRNA translation. Knockout of miR-21 prevented the decrease of PPARα, alleviated microvascular damage, ameliorated inflammation and reduced cell apoptosis in the retina of db/db mice. Intravitreal injection of miR-21 inhibitor attenuated PPARα down-regulation and ameliorated retinal inflammation in db/db mice. Further, retinal miR-21 levels were increased, while PPARα levels were decreased in oxygen-induced retinopathy (OIR). Knockout of miR-21 prevented PPARα down-regulation and ameliorated retinal neovascularization and inflammation in OIR retinas. In conclusion, diabetes-induced over-expression of miR-21 in the retina is responsible, at least in part, for PPARα down-regulation in DR. Targeting miR-21 may represent a novel therapeutic strategy for DR.
The roles of transforming growth factor (TGF)-β in extracellular matrix production and vascular remodeling, coupled with increased TGF-β expression and signaling in diabetes, suggest TGF-β as an important contributor to the microangiopathy of diabetic retinopathy and nephropathy. To investigate whether increased TGF-β signaling could be a therapeutic target for preventing retinopathy, we used a pharmacologic approach (SM16, a selective inhibitor of the type 1 TGF-β receptor activin receptor-like kinase 5, orally active) to inhibit the increased, but not the basal, Tgf-β signaling in retinal vessels of diabetic rats. At the level of vascular gene expression, 3.5 months' diabetes induced minimal changes. Diabetes + SM16 for 3 weeks caused widespread changes in gene expression poised to enhance vascular inflammation, thrombosis, leakage, and wall instability; these changes were not observed in control rats given SM16. The synergy of diabetes and SM16 in altering gene expression was not observed in the lung. At the level of vascular network morphology, 7 months' diabetes induced no detectable changes. Diabetes + SM16 for 3 weeks caused instead distorted morphology and decreased density. Thus, in diabetes, retinal vessels become dependent on a small increase in TGF-β signaling via activin receptor-like kinase 5 to maintain early integrity. The increased TGF-β signaling may protect against rapid retinopathy progression and should not be a target of inhibitory interventions.
Diabetes mellitus is a chronic disease that affects 415 million people worldwide. Despite treatment advances, diabetic eye disease remains a leading cause of vision loss worldwide. Diabetic macular edema (DME) is a common cause of vision loss in diabetic patients. The pathophysiology is complex and involves multiple pathways that ultimately lead to central retinal thickening and, if untreated, visual loss. First-line treatment of DME has evolved from focal/grid laser established by the Early Treatment of Diabetic Retinopathy Study (ETDRS) to intravitreous pharmacologic therapy. Landmark prospective clinical trials examining the effect of intravitreous injections of vascular endothelial growth factor (VEGF) inhibitors in the treatment of DME have demonstrated improved visual outcomes over focal grid laser. This review focuses on the scientific evidence treatment of DME, disease pathophysiology, clinical disease course, current treatment standards, and emerging novel therapeutic approaches.
Purpose: To determine whether cone density, spacing, or regularity in eyes with and without diabetes (DM) as assessed by high-resolution adaptive optics scanning laser ophthalmoscopy (AOSLO) correlates with presence of diabetes, diabetic retinopathy (DR) severity, or presence of diabetic macular edema (DME). Methods: Participants with type 1 or 2 DM and healthy controls underwent AOSLO imaging of four macular regions. Cone assessment was performed by independent graders for cone density, packing factor (PF), nearest neighbor distance (NND), and Voronoi tile area (VTA). Regularity indices (mean/SD) of NND (RI-NND) and VTA (RI-VTA) were calculated. Results: Fifty-three eyes (53 subjects) were assessed. Mean ± SD age was 44 ± 12 years; 81% had DM (duration: 22 ± 13 years; glycated hemoglobin [HbA1c]: 8.0 ± 1.7%; DM type 1: 72%). No significant relationship was found between DM, HbA1c, or DR severity and cone density or spacing parameters. However, decreased regularity of cone arrangement in the macular quadrants was correlated with presence of DM (RI-NND: P = 0.04; RI-VTA: P = 0.04), increasing DR severity (RI-NND: P = 0.04), and presence of DME (RI-VTA: P = 0.04). Eyes with DME were associated with decreased density (P = 0.04), PF (P = 0.03), and RI-VTA (0.04). Conclusions: Although absolute cone density and spacing don't appear to change substantially in DM, decreased regularity of the cone arrangement is consistently associated with the presence of DM, increasing DR severity, and DME. Future AOSLO evaluation of cone regularity is warranted to determine whether these changes are correlated with, or predict, anatomic or functional deficits in patients with DM.
Diabetic retinopathy is a leading cause of new-onset vision loss worldwide. Treatments supported by large clinical trials are effective in preserving vision, but many persons do not receive timely diagnosis and treatment of diabetic retinopathy, which is typically asymptomatic when most treatable. Telemedicine evaluation to identify diabetic retinopathy has the potential to improve access to care, but there are no universal standards regarding camera choice or protocol for ocular telemedicine. We review the literature regarding the impact of imaging device, number and size of retinal images, pupil dilation, type of image grader, and diagnostic accuracy on telemedicine assessment for diabetic retinopathy. Telemedicine assessment of diabetic retinopathy has the potential to preserve vision, but further development of telemedicine specific technology and standardization of operations are needed to better realize its potential.
Diabetic retinopathy is a leading cause of new-onset vision loss worldwide. Treatments supported by large clinical trials are effective in preserving vision, but many persons do not receive timely diagnosis and treatment of diabetic retinopathy, which is typically asymptomatic when most treatable. Telemedicine evaluation to identify diabetic retinopathy has the potential to improve access to care and improve outcomes, but incomplete implementation of published standards creates a risk to program utility and sustainability. In a prior article, we reviewed the literature regarding the impact of imaging device, number and size of retinal images, pupil dilation, type of image grader, and diagnostic accuracy on telemedicine assessment for diabetic retinopathy. This article reviews the literature regarding the impact of automated image grading, cost effectiveness, program standards, and quality assurance (QA) on telemedicine assessment of diabetic retinopathy. Telemedicine assessment of diabetic retinopathy has the potential to preserve vision, but greater attention to development and implementation of standards is needed to better realize its potential.
Diabetes mellitus represents a growing international public health issue with a near quadrupling in its worldwide prevalence since 1980. Though it has many known microvascular complications, vision loss from diabetic retinopathy is one of the most devastating for affected individuals. In addition, there is increasing evidence to suggest that diabetic patients have a greater risk for glaucoma as well. Though the pathophysiology of glaucoma is not completely understood, both diabetes and glaucoma appear to share some common risk factors and pathophysiologic similarities with studies also reporting that the presence of diabetes and elevated fasting glucose levels are associated with elevated intraocular pressure-the primary risk factor for glaucomatous optic neuropathy. While no study has completely addressed the possibility of detection bias, most recent epidemiologic evidence suggests that diabetic populations are likely enriched with glaucoma patients. As the association between diabetes and glaucoma becomes better defined, routine evaluation for glaucoma in diabetic patients, particularly in the telemedicine setting, may become a reasonable consideration to reduce the risk of vision loss in these patients.
According to current projections, the number of Americans with diabetes mellitus will increase from 27.8 million in 2007 to 60.7 million in 2030. With the increasing gap between demand for eye care and supply of ophthalmologists and optometrists, and the non-uniform distribution of eye care providers in US counties, barriers to eye examinations will likely increase. Telemedicine assessment of diabetic retinal disease through remote retinal imaging and diagnosis has the potential to meet these growing demands. To establish evidence for a telemedicine program as an effective modality for diabetic retinopathy (DR) assessment, the interpretation of teleretinal images should compare favorably with Early Treatment Diabetic Retinopathy Study film or digital photographs. We review the current evidence on the critical features and characteristics of ocular telehealth programs for DR in the following categories: image gradability, mydriasis, sensitivity and specificity, cost-effectiveness, long-term effectiveness, patient comfort and satisfaction, and improvement of patient related outcomes.
Diabetic retinopathy (DR) is the most frequent microvascular complication from diabetes and requires annual screening and at least annual follow-up. A systemic approach to optimize blood glucose and blood pressure may halt progression to severe stages of DR and obviate the need for ocular treatment. Although there is evidence of benefit from fenofibrate or intravitreous antiVEGF treatment for eyes with nonproliferative DR (NPDR), these therapies are not standard care for NPDR at this time. Some patients with severe NPDR, especially those with type 2 diabetes, benefit from early panretinal photocoagulation (PRP). Once DR progresses to proliferative DR (PDR), treatment is often necessary to prevent visual loss. PRP remains mainstay treatment for PDR with high-risk characteristics. However, intravitreous antiVEGF injections appear to be a safe and effective treatment alternative for PDR through at least two years. Vitreoretinal surgery is indicated for PDR cases with non-clearing vitreous hemorrhage and/or tractional retinal detachment.
PURPOSE: To determine whether hyperreflective foci (HF) and macular thickness on spectral domain ocular coherence tomography are associated with lipid levels in patients with Type 2 diabetes. METHODS: Two hundred and thirty-eight participants from four sites had fundus photographs and spectral domain ocular coherence tomography images graded for hard exudates and HF, respectively. Regression models were used to determine the association between serum lipid levels and 1) presence of HF and hard exudates and 2) central subfield macular thickness, central subfield macular volume, and total macular volume. RESULTS: All patients with hard exudates on fundus photographs had corresponding HF on spectral domain ocular coherence tomography, but 57% of patients with HF on optical coherence tomography did not have hard exudates detected in their fundus photographs. Presence of HF was associated with higher total cholesterol (odds ratio = 1.13, 95% confidence interval = 1.01-1.27, P = 0.03) and higher low-density lipoprotein levels (odds ratio = 1.17, 95% confidence interval = 1.02-1.35, P = 0.02) in models adjusting for other risk factors. The total macular volume was also associated with higher total cholesterol (P = 0.009) and triglyceride (P = 0.02) levels after adjusting for other risk factors. CONCLUSION: Higher total and low-density lipoprotein cholesterol were associated with presence of HF on spectral domain ocular coherence tomography. Total macular volume was associated with higher total cholesterol and triglyceride levels.
Diabetic retinopathy (DR) is the leading cause of blindness in the working-age population in developed countries, and its prevalence will increase as the global incidence of diabetes grows exponentially. DR begins with an early nonproliferative stage in which retinal blood vessels and neurons degenerate as a consequence of chronic hyperglycemia, resulting in vasoregression and persistent retinal ischemia, metabolic disequilibrium, and inflammation. This is conducive to overcompensatory pathological neovascularization associated with advanced proliferative DR. Although DR is considered a microvascular complication, the retinal microvasculature is intimately associated with and governed by neurons and glia; neurodegeneration, neuroinflammation, and dysregulation of neurovascular cross talk are responsible in part for vascular abnormalities in both early nonproliferative DR and advanced proliferative DR. Neuronal activity directly regulates microvascular dilation and blood flow in the process of neurovascular coupling. Retinal neurons also secrete guidance cues in response to injury, ischemia, or metabolic stress that may either promote or suppress vascular outgrowth, either alleviating or exacerbating DR, contingent on the stage of disease and retinal microenvironment. Neurodegeneration, impaired neurovascular coupling, and dysregulation of neuronal guidance cues are key events in the pathogenesis of DR, and correcting these events may prevent or delay development of advanced DR. The review discusses the mechanisms of neurovascular cross talk and its dysregulation in DR, and their potential therapeutic implications.
PURPOSE: To investigate the association between sleep duration and diabetic retinopathy (DR). METHODS: A population-based cross-sectional study using a nation-wide, systemically stratified, multistage, clustered sampling method included a total of 1670 subjects aged ≥40 years with diabetes who participated in the Korean National Health and Nutrition Examination Survey during 2008-2012. All participants performed standardized interviews, including self-reported sleep duration, and comprehensive ophthalmic examinations. Seven standard retinal fundus photographs were obtained from both eyes after pupil dilatation. Diabetic retinopathy (DR) was graded and classified as any DR and vision-threatening DR. Participants were stratified into men and women. RESULTS: The mean sleep duration was 6.71 hr/day. In men, adjusted OR of any DR was 1.88 [95% confidence interval (OR), 1.01-3.59] in those with ≤5 hr sleep, and 2.19 (95% CI, 1.01-4.89) in those with ≥9 hr sleep, compared to in subjects with 6-8 hr sleep, after adjusting for potential confounders including age, body mass index (BMI), diabetes duration, fasting glucose level, haemoglobin A1c levels and hypertension. In women, however, no significant association between sleep duration and DR was found. The vision-threatening DR was not significantly associated with sleep duration in either men or women. CONCLUSIONS: Short and long sleep was associated with high prevalence of DR in men. Sleep deprivation may be involved in the pathogenesis of DR development.
Abnormal blood vessel growth in the retina is a hallmark of many retinal diseases, such as retinopathy of prematurity (ROP), proliferative diabetic retinopathy, and the wet form of age-related macular degeneration. In particular, ROP has been an important health concern for physicians since the advent of routine supplemental oxygen therapy for premature neonates more than 70 years ago. Since then, researchers have explored several animal models to better understand ROP and retinal vascular development. Of these models, the mouse model of oxygen-induced retinopathy (OIR) has become the most widely used, and has played a pivotal role in our understanding of retinal angiogenesis and ocular immunology, as well as in the development of groundbreaking therapeutics such as anti-vascular endothelial growth factor injections for wet age-related macular degeneration. Numerous refinements to the model have been made since its inception in the 1950s, and technological advancements have expanded the use of the model across multiple scientific fields. In this review, we explore the historical developments that have led to the mouse OIR model utilized today, essential concepts of OIR, limitations of the model, and a representative selection of key findings from OIR, with particular emphasis on current research progress.
PURPOSE: The risk of vision loss from proliferative diabetic retinopathy (PDR) can be reduced with timely detection and treatment. We aimed to identify serum molecular signatures that might help in the early detection of PDR in patients with diabetes. METHODS: A total of 40 patients with diabetes were recruited at King Khaled Eye Specialist Hospital in Riyadh, Saudi Arabia, 20 with extensive PDR and 20 with mild non-proliferative diabetic retinopathy (NPDR). The two groups were matched in age, gender, and known duration of diabetes. We examined the whole genome transcriptome of blood samples from the patients using RNA sequencing. We built a model using a support vector machine (SVM) approach to identify gene combinations that can classify the two groups. RESULTS: Differentially expressed genes were calculated from a total of 25,500 genes. Six genes (CCDC144NL, DYX1C1, KCNH3, LOC100506476, LOC285847, and ZNF80) were selected from the top 26 differentially expressed genes, and a combinatorial molecular signature was built based on the expression of the six genes. The mean area under receiver operating characteristic (ROC) curve was 0.978 in the cross validation. The corresponding sensitivity and specificity were 91.7% and 91.5%, respectively. CONCLUSIONS: Our preliminary study defined a combinatorial molecular signature that may be useful as a potential biomarker for early detection of proliferative diabetic retinopathy in patients with diabetes. A larger-scale study with an independent cohort of samples is necessary to validate and expand these findings.
