PURPOSE: We examined the role of DNA copy number variants (CNVs) of known glaucoma genes in relation to primary open angle glaucoma (POAG). METHODS: Our study included DNA samples from two studies (NEIGHBOR and GLAUGEN). All the samples were genotyped with the Illumina Human660W_Quad_v1 BeadChip. After removing non-blood-derived and amplified DNA samples, we applied quality control steps based on the mean Log R Ratio and the mean B allele frequency. Subsequently, data from 3057 DNA samples (1599 cases and 1458 controls) were analyzed with PennCNV software. We defined CNVs as those ≥5 kilobases (kb) in size and interrogated by ≥5 consecutive probes. We further limited our investigation to CNVs in known POAG-related genes, including CDKN2B-AS1, TMCO1, SIX1/SIX6, CAV1/CAV2, the LRP12-ZFPM2 region, GAS7, ATOH7, FNDC3B, CYP1B1, MYOC, OPTN, WDR36, SRBD1, TBK1, and GALC. RESULTS: Genomic duplications of CDKN2B-AS1 and TMCO1 were each found in a single case. Two cases carried duplications in the GAS7 region. Genomic deletions of SIX6 and ATOH7 were each identified in one case. One case carried a TBK1 deletion and another case carried a TBK1 duplication. No controls had duplications or deletions in these six genes. A single control had a duplication in the MYOC region. Deletions of GALC were observed in five cases and two controls. CONCLUSIONS: The CNV analysis of a large set of cases and controls revealed the presence of rare CNVs in known POAG susceptibility genes. Our data suggest that these rare CNVs may contribute to POAG pathogenesis and merit functional evaluation.
- Home
- Glaucoma
Glaucoma
In glaucoma, regardless of its etiology, retinal ganglion cells degenerate and eventually die. Although age and elevated intraocular pressure (IOP) are the main risk factors, there are still many mysteries in the pathogenesis of glaucoma. The advent of genome-wide microarray expression screening together with the availability of animal models of the disease has allowed analysis of differential gene expression in all parts of the eye in glaucoma. This review will outline the findings of recent genome-wide expression studies and discuss their commonalities and differences. A common finding was the differential regulation of genes involved in inflammation and immunity, including the complement system and the cytokines transforming growth factor β (TGFβ) and tumor necrosis factor α (TNFα). Other genes of interest have roles in the extracellular matrix, cell-matrix interactions and adhesion, the cell cycle, and the endothelin system.
PURPOSE: To assess whether brimonidine 0.15% alters retinal vascular autoregulation and short-term visual function in normal tension glaucoma patients who demonstrate retinal vascular dysregulation. DESIGN: Nonrandomized clinical trial. METHODS: In this prospective study, 46 normal tension glaucoma patients not previously treated with brimonidine underwent retinal vascular autoregulation testing and visual function assessment using frequency doubling technology perimetry and equivalent noise motion sensitivity testing. We measured blood flow in a major temporal retinal artery with subjects seated and then while reclined for 30 minutes. Patients having a change in retinal blood flow with posture change outside the range previously found in healthy subjects were classified as having retinal vascular dysregulation. They were treated with brimonidine 0.15% for 8 weeks and designated for retesting. RESULTS: Twenty-three patients demonstrated retinal vascular dysregulation at the initial visit. Younger age (P = .050) and diabetes (P = .055) were marginally significant risk factors for retinal vascular dysregulation. After the 8-week course with brimonidine, 14 of the 17 patients who completed the study showed a return of posture-induced retinal blood flow changes to levels consistent with normal retinal vascular autoregulation (P < .0001). We found no significant changes in frequency doubling technology perimetry or in motion detection parameters following treatment with brimondine (P > .09 for all tests performed). CONCLUSIONS: Brimonidine significantly improved impaired retinal vascular autoregulation in normal tension glaucoma patients, but short-term alteration in visual function could not be demonstrated.
Complex traits can be triggered by environmental factors in genetically predisposed individuals. The lysyl oxidase-like 1 gene (LOXL1) variants associated with exfoliation syndrome (XFS) are detected in >90% of cases that have been genotyped from sites around the world. Remarkably, roughly 80% of people without XFS also possess these same variants in all populations that have been tested. Nonetheless, the prevalence of XFS varies from ≤0.4% to >20%. These data suggest that other genetic variants, epigenetic modifications, or environmental factors also contribute to XFS. Furthermore, it is possible that environmental factors modify the association between LOXL1 and XFS. Interactions between LOXL1 variants and environmental factors could explain the varying prevalence of XFS seen throughout the world. At the very least, the discovery of the association between LOXL1 variants and XFS has opened the door to the discovery of environmental risk factors for this condition. Candidate gene-environment interactions in XFS will be discussed.
Variants in LOXL1 are significantly associated with exfoliation syndrome (XFS), however the impact of the associated variants on disease development is not yet understood. Initially the associated missense changes, R141L and G153D, were considered to be pathogenic alleles. Flipping of the risk allele in certain populations for both missense variants provided strong evidence that these missense changes are not biologically significant and suggest that other LOXL1 variant(s), in linkage disequilibrium with these missense variants, predispose to exfoliation syndrome by affecting gene expression or protein function. Several lines of evidence support dysregulation of LOXL1 gene expression as a contributing factor to disease development. First, in the German population the R141L (rs1048661) risk allele reduced LOXL1 expression by 20%. Second, haplotype analysis identified a risk haplotype that includes including R141L, G153D, as well as a LOXL1 promoter region variant previously shown to reduce gene expression (rs16958477). Third, the LOXL1 risk haplotype influences gene expression induced by disease-associated factors TGF-B1, oxidative stress, UV light and hypoxia. Finally, a LOXL1 null mouse has some features of XFS suggesting that decreased enzyme activity contributes to predisposition to the disease. Collectively, these results suggest that dysregulation of LOXL1 expression is a contributing factor to exfoliation disease development.
Elevated intraocular pressure (IOP) is an important risk factor in developing glaucoma, and variability in IOP might herald glaucomatous development or progression. We report the results of a genome-wide association study meta-analysis of 18 population cohorts from the International Glaucoma Genetics Consortium (IGGC), comprising 35,296 multi-ancestry participants for IOP. We confirm genetic association of known loci for IOP and primary open-angle glaucoma (POAG) and identify four new IOP-associated loci located on chromosome 3q25.31 within the FNDC3B gene (P = 4.19 × 10(-8) for rs6445055), two on chromosome 9 (P = 2.80 × 10(-11) for rs2472493 near ABCA1 and P = 6.39 × 10(-11) for rs8176693 within ABO) and one on chromosome 11p11.2 (best P = 1.04 × 10(-11) for rs747782). Separate meta-analyses of 4 independent POAG cohorts, totaling 4,284 cases and 95,560 controls, showed that 3 of these loci for IOP were also associated with POAG.
Primary open-angle glaucoma (POAG) is a major cause of irreversible blindness worldwide. We performed a genome-wide association study in an Australian discovery cohort comprising 1,155 cases with advanced POAG and 1,992 controls. We investigated the association of the top SNPs from the discovery stage in two Australian replication cohorts (932 cases and 6,862 controls total) and two US replication cohorts (2,616 cases and 2,634 controls total). Meta-analysis of all cohorts identified three loci newly associated with development of POAG. These loci are located upstream of ABCA1 (rs2472493[G], odds ratio (OR) = 1.31, P = 2.1 × 10(-19)), within AFAP1 (rs4619890[G], OR = 1.20, P = 7.0 × 10(-10)) and within GMDS (rs11969985[G], OR = 1.31, P = 7.7 × 10(-10)). Using RT-PCR and immunolabeling, we show that these genes are expressed within human retina, optic nerve and trabecular meshwork and that ABCA1 and AFAP1 are also expressed in retinal ganglion cells.
While mean intraocular pressure (IOP) has long been known to correlate with glaucomatous damage, the role of IOP fluctuation is less clearly defined. There is extensive evidence in the literature for and against the value of short-term and long-term IOP fluctuation in the evaluation and prognosis of patients with glaucoma. We present here the arguments made by both sides, as well as a discussion of the pitfalls of prior research and potential directions for future studies. Until a reliable method is developed that allows for constant IOP monitoring, many variables will continue to hinder us from drawing adequate conclusions regarding the significance of IOP variation.
PURPOSE: To evaluate the correlation and agreement between optical coherence tomography (Cirrus HD-OCT) retinal nerve fiber layer (RNFL) thickness map and scan circle RNFL thickness measurements. METHODS: ImageJ and custom Perl scripts were used to derive RNFL thickness measurements from RNFL thickness maps of optic disc scans of healthy and glaucomatous eyes. Average, quadrant, and clock-hour RNFL thickness of the map, and RNFL thickness of the areas inside/outside the scan circle were obtained. Correlation and agreement between RNFL thickness map and scan circle RNFL thickness measurements were evaluated using R and Bland-Altman plots, respectively. RESULTS: A total of 104 scans from 26 healthy eyes and 120 scans from 30 glaucomatous eyes were analyzed. RNFL thickness map and scan circle measurements were highly reproducible (eg, in healthy eyes, average RNFL thickness coefficients of variation were 2.14% and 2.52% for RNFL thickness map and scan circle, respectively) and highly correlated (0.55≤R≤0.98). In general, the scan circle provided greater RNFL thickness than the RNFL thickness map in corresponding sectors and the differences tended to increase as RNFL thickness increased. The width of the 95% limits of agreement ranged between 5.28 and 36.80 μm in healthy eyes, and between 11.69 and 42.89 μm in glaucomatous eyes. CONCLUSIONS: Despite good correlation between RNFL thickness map and scan circle measurements, agreement was generally poor, suggesting that RNFL thickness assessment over the entire scan area may provide additional clinically relevant information to the conventional scan circle analysis. In the absence of available measurements from the entire peripapillary region, the RNFL thickness maps can be used to investigate localized RNFL thinning in areas not intercepted by the scan circle.
PURPOSE: To evaluate the role of anterior segment (AS) optical coherence tomography (OCT) as a standardized method of imaging Boston type I keratoprosthesis (KPro) after surgery, particularly in the visualization of iris and angle structures. DESIGN: Prospective case series. PARTICIPANTS: Twenty patients who underwent KPro implantation in 1 eye. METHODS: Patients underwent AS OCT imaging before surgery. After KPro implantation, patients were imaged using the AS single, dual, and quad scans to obtain transverse images of the eye every 15° over 360°. High-resolution, corneal quad, and anterior chamber scans were also obtained. This imaging protocol allowed juxtaposition and comparison of the same imaging coordinates obtained before surgery and 3, 6, and 12 months after surgery. MAIN OUTCOME MEASURES: Postoperative visual acuity (VA), glaucoma progression on clinical examination and formal visual field testing, and anatomic angle changes on AS OCT defined by angle closure, peripheral anterior synechiae (PAS), iris-KPro backplate touch, and graft-host interface changes over time. RESULTS: Mean follow-up was 18.8±3.2 months. The average preoperative VA was 1.9±0.5 logarithm of the minimum angle of resolution. After surgery, VA improved to 1.0±0.9 at last follow-up (P = 0.002). Fourteen of 20 patients had glaucoma before surgery. After surgery, 5 of these patients deteriorated clinically and 1 de novo diagnosis of glaucoma was made. On OCT, the average total degrees of angle closure for all patients increased from 158.5±158.9° before surgery to 205.4±154.0° after surgery (P = 0.04). The number of eyes with 360° of PAS increased from 6 of 20 before surgery to 9 of 20 after surgery. Iris-backplate touch was demonstrated in 5 of 20 patients, with an average area of involvement of 24.2±36.2°. Overall, of the 12 of 20 patients with clear signs of anatomic angle narrowing and synechiae progression on imaging, 3 had glaucoma deterioration detected by clinical examination. In the other 9 patients, angle changes on OCT were not accompanied by any detectable clinical signs of glaucomatous deterioration. CONCLUSIONS: Anterior segment OCT can be used to observe anatomic changes after KPro implantation that cannot be detected otherwise. We were unable to demonstrate a correlation between anatomic features and clinical progression.
Glaucoma is characterized by irreversible optic nerve degeneration and is the most frequent cause of irreversible blindness worldwide. Here, the International Glaucoma Genetics Consortium conducts a meta-analysis of genome-wide association studies of vertical cup-disc ratio (VCDR), an important disease-related optic nerve parameter. In 21,094 individuals of European ancestry and 6,784 individuals of Asian ancestry, we identify 10 new loci associated with variation in VCDR. In a separate risk-score analysis of five case-control studies, Caucasians in the highest quintile have a 2.5-fold increased risk of primary open-angle glaucoma as compared with those in the lowest quintile. This study has more than doubled the known loci associated with optic disc cupping and will allow greater understanding of mechanisms involved in this common blinding condition.
The characterization of genes responsible for glaucoma is the critical first step toward the development of gene-based diagnostic and screening tests, which could identify individuals at risk for disease before irreversible optic nerve damage occurs. Early-onset forms of glaucoma affecting children and young adults are typically inherited as Mendelian autosomal dominant or recessive traits whereas glaucoma affecting older adults has complex inheritance. In this report, we present a comprehensive overview of the genes and genomic regions contributing to inherited glaucoma.
