- Home
- Retina
Retina
PURPOSE: The Retinal Detachment after Open Globe Injury (RD-OGI) Score is a clinical prediction model that was developed at the Massachusetts Eye and Ear Infirmary to predict the risk of retinal detachment (RD) after open globe injury (OGI). This study sought to validate the RD-OGI Score in an independent cohort of patients. DESIGN: Retrospective cohort study. PARTICIPANTS: The predictive value of the RD-OGI Score was evaluated by comparing the original RD-OGI Scores of 893 eyes with OGI that presented between 1999 and 2011 (the derivation cohort) with 184 eyes with OGI that presented from January 1, 2012, to January 31, 2014 (the validation cohort). METHODS: Three risk classes (low, moderate, and high) were created and logistic regression was undertaken to evaluate the optimal predictive value of the RD-OGI Score. A Kaplan-Meier survival analysis evaluated survival experience between the risk classes. MAIN OUTCOME MEASURES: Time to RD. RESULTS: At 1 year after OGI, 255 eyes (29%) in the derivation cohort and 66 eyes (36%) in the validation cohort were diagnosed with an RD. At 1 year, the low risk class (RD-OGI Scores 0-2) had a 3% detachment rate in the derivation cohort and a 0% detachment rate in the validation cohort, the moderate risk class (RD-OGI Scores 2.5-4.5) had a 29% detachment rate in the derivation cohort and a 35% detachment rate in the validation cohort, and the high risk class (RD-OGI scores 5-7.5) had a 73% detachment rate in the derivation cohort and an 86% detachment rate in the validation cohort. Regression modeling revealed the RD-OGI to be highly discriminative, especially 30 days after injury, with an area under the receiver operating characteristic curve of 0.939 in the validation cohort. Survival experience was significantly different depending upon the risk class (P < 0.0001, log-rank chi-square). CONCLUSIONS: The RD-OGI Score can reliably predict the future risk of developing an RD based on clinical variables that are present at the time of the initial evaluation after OGI.
Regulation of biological processes occurs through complex, synergistic mechanisms. In this study, we discovered the synergistic orchestration of multiple mechanisms regulating the normal and diseased state (age related macular degeneration, AMD) in the retina. We uncovered gene networks with overlapping feedback loops that are modulated by nuclear hormone receptors (NHR), miRNAs, and epigenetic factors. We utilized a comprehensive filtering and pathway analysis strategy comparing miRNA and microarray data between three mouse models and human donor eyes (normal and AMD). The mouse models lack key NHRS (Nr2e3, RORA) or epigenetic (Ezh2) factors. Fifty-four total miRNAs were differentially expressed, potentially targeting over 150 genes in 18 major representative networks including angiogenesis, metabolism, and immunity. We identified sixty-eight genes and 5 miRNAS directly regulated by NR2E3 and/or RORA. After a comprehensive analysis, we discovered multimodal regulation by miRNA, NHRs, and epigenetic factors of three miRNAs (miR-466, miR1187, and miR-710) and two genes (Ell2 and Entpd1) that are also associated with AMD. These studies provide insight into the complex, dynamic modulation of gene networks as well as their impact on human disease, and provide novel data for the development of innovative and more effective therapeutics.
PURPOSE: To review the available evidence on the ocular safety and efficacy of anti-vascular endothelial growth factor (VEGF) agents for the treatment of retinopathy of prematurity (ROP) compared with laser photocoagulation therapy. METHODS: A literature search of the PubMed and Cochrane Library databases was conducted last on September 6, 2016, with no date restrictions and limited to articles published in English. This search yielded 311 citations, of which 37 were deemed clinically relevant for full-text review. Thirteen of these were selected for inclusion in this assessment. The panel methodologist assigned ratings to the selected articles according to the level of evidence. RESULTS: Of the 13 citations, 6 articles on 5 randomized clinical trials provided level II evidence supporting the use of anti-VEGF agents, either as monotherapy or in combination with laser therapy. The primary outcome for these articles included recurrence of ROP and the need for retreatment (3 articles), retinal structure (2 articles), and refractive outcome (1 article). Seven articles were comparative case series that provided level III evidence. The primary outcomes included the effects of anti-VEGF treatment on development of peripheral retinal vessels (1 article), refractive outcomes (1 article), or both structural and refractive or visual outcomes (5 articles). CONCLUSIONS: Current level II and III evidence indicates that intravitreal anti-VEGF therapy is as effective as laser photocoagulation for achieving regression of acute ROP. Although there are distinct ocular advantages to anti-VEGF pharmacotherapy for some cases (such as eyes with zone I disease or aggressive posterior ROP), the disadvantages are that the ROP recurrence rate is higher, and vigilant and extended follow-up is needed because retinal vascularization is usually incomplete. After intravitreal injection, bevacizumab can be detected in serum within 1 day, and serum VEGF levels are suppressed for at least 8 to 12 weeks. The effects of lowering systemic VEGF levels on the developing organ systems of premature infants are unknown, and there are limited long-term data on potential systemic and neurodevelopmental effects after anti-VEGF use for ROP treatment. Anti-VEGF agents should be used judiciously and with awareness of the known and unknown or potential side effects.
Purpose: Using quantitative fundus autofluorescence (qAF), we analyzed short-wavelength autofluorescent (SW-AF) rings in RP. Methods: Short-wavelength autofluorescent images (486 nm excitation) of 40 patients with RP (69 eyes) were acquired with a confocal scanning laser ophthalmoscope equipped with an internal fluorescent reference. Mean qAF was measured in eight preset segments (qAF8) and in region of interest (ROI)-qAF (200-700 μm) within and external to the borders of the rings at superior, temporal, and inferior sites relative to the ring. For both groups, qAF in patients with RP was compared to age-similar and race/ethnicity-matched healthy eyes at equivalent retinal locations. Results: In 71% of eyes of RP patients, qAF8 acquired internal to the inner border of the ring, was within the 95% confidence interval (CI) for healthy eyes, while in the remaining RP eyes qAF8 was either higher or lower than the CI. Measured external to the ring, qAF8 values were within the CI in 47% of RP eyes with the other eyes being higher or lower. In 28% of sites measured by ROI-qAF within the SW-AF ring, values were above the 95% CI of healthy controls. Region of interest-qAF measured just external to the ring was within the CI of healthy eyes in 74% of locations. The average local elevation in qAF within the ring was approximately 15%. In SD-OCT scans, photoreceptor-attributable reflectivity bands were thinned within and external to the ring. Conclusions: Increased fluorophore production may be a factor in the formation of the SW-AF rings in RP.
Purpose: Vascular endothelial growth factor receptor 2 (VEGFR2) plays a key role in VEGF-induced angiogenesis. The goal of this project was to test the hypothesis that editing genomic VEGFR2 loci using the technology of clustered regularly interspaced palindromic repeats (CRISPR)-associated DNA endonuclease (Cas)9 in Streptococcus pyogenes (SpCas9) was able to block VEGF-induced activation of Akt and tube formation. Methods: Four 20 nucleotides for synthesizing single-guide RNAs based on human genomic VEGFR2 exon 3 loci were selected and cloned into a lentiCRISPR v2 vector, respectively. The DNA fragments from the genomic VEGFR2 exon 3 of transduced primary human retinal microvascular endothelial cells (HRECs) were analyzed by Sanger DNA sequencing, surveyor nuclease assay, and next-generation sequencing (NGS). In the transduced cells, expression of VEGFR2 and VEGF-stimulated signaling events (e.g., Akt phosphorylation) were determined by Western blot analyses; VEGF-induced cellular responses (proliferation, migration, and tube formation) were examined. Results: In the VEGFR2-sgRNA/SpCas9-transduced HRECs, Sanger DNA sequencing indicated that there were mutations, and NGS demonstrated that there were 83.57% insertion and deletions in the genomic VEGFR2 locus; expression of VEGFR2 was depleted in the VEGFR2-sgRNA/SpCas9-transduced HRECs. In addition, there were lower levels of Akt phosphorylation in HRECs with VEGFR2-sgRNA/SpCas9 than those with LacZ-sgRNA/SpCas9, and there was less VEGF-stimulated Akt activation, proliferation, migration, or tube formation in the VEGFR2-depleted HRECs than those treated with aflibercept or ranibizumab. Conclusions: The CRISPR-SpCas9 technology is a potential novel approach to prevention of pathologic angiogenesis.
Pathological neovascularization, a leading cause of blindness, is seen in retinopathy of prematurity, diabetic retinopathy, and age-related macular degeneration. Using a mouse model of hypoxia-driven retinal neovascularization, we find that fibroblast growth factor 21 (FGF21) administration suppresses, and FGF21 deficiency worsens, retinal neovessel growth. The protective effect of FGF21 against neovessel growth was abolished in adiponectin (APN)-deficient mice. FGF21 administration also decreased neovascular lesions in two models of neovascular age-related macular degeneration: very-low-density lipoprotein-receptor-deficient mice with retinal angiomatous proliferation and laser-induced choroidal neovascularization. FGF21 inhibited tumor necrosis α (TNF-α) expression but did not alter Vegfa expression in neovascular eyes. These data suggest that FGF21 may be a therapeutic target for pathologic vessel growth in patients with neovascular eye diseases, including retinopathy of prematurity, diabetic retinopathy, and age-related macular degeneration.
PURPOSE: To report a novel presentation of dyskeratosis congenita masquerading as familial exudative vitreoretinopathy. METHODS: Observational case series involving single family and literature review. RESULTS: A brother and sister were diagnosed with familial exudative vitreoretinopathy at ages 4 and 2, respectively. Both patients were managed with laser photocoagulation. Eight years after the initial presentation, both siblings developed pancytopenia secondary to bone marrow failure. Laboratory work-up revealed severely shortened telomere length in both patients, and genetic testing revealed a missense mutation in the gene that encodes the reverse transcriptase component of telomerase, confirming the diagnosis of dyskeratosis congenita. The father of both children was a carrier of the same mutation, who exhibited marked retinal vascular tortuosity of the second-order vessels. CONCLUSION: Dyskeratosis congenita is a severe multisystem disorder, which should be considered in cases of pediatric exudative retinopathies with concurrent signs and/or symptoms of bone marrow failure.
