Mutations in the ubiquitously expressed pre-mRNA processing factors 3, 8, and 31 (PRPF3, PRPF8, and PRPF31) cause nonsyndromic dominant retinitis pigmentosa in humans, an inherited retinal degeneration. It is unclear what mechanisms, or which cell types of the retina, are affected. Transgenic mice with the human mutations in these genes display late-onset morphological changes in the retinal pigment epithelium (RPE). To determine whether the observed morphological changes are preceded by abnormal RPE function, we investigated its phagocytic function in Prpf3(T494M/T494M), Prpf8(H2309P/H2309P), and Prpf31(+/-) mice. We observe decreased phagocytosis in primary RPE cultures from mutant mice, and this is replicated by shRNA-mediated knockdown of PRPF31 in human ARPE-19 cells. The diurnal rhythmicity of phagocytosis is almost lost, indicated by the marked attenuation of the phagocytic burst 2 hours after light onset. The strength of adhesion between RPE apical microvilli and photoreceptor outer segments also declined during peak adhesion in all mutants. In all models, at least one of the receptors involved in binding and internalization of shed photoreceptor outer segments was subjected to changes in localization. Although the mechanism underlying these changes in RPE function is yet to be elucidated, these data are consistent with the mouse RPE being the primary cell affected by mutations in the RNA splicing factors, and these changes occur at an early age.
- Home
- Retinal Degenerations
Retinal Degenerations
While growth factor-driven dimerization of receptor tyrosine kinases (RTKs) is a simple and intuitive mechanism of activating RTKs, K.-I. Arimoto et al. (Mol. Cell. Biol. 34:3843-3854, 2014, doi:10.1128/MCB.00758-14) describe a novel means of promoting the activity of RTKs. Namely, plakophilin-2 (PKP2) associates with the epidermal growth factor receptor (EGFR) and enhances its ligand-dependent and ligand-independent activity. This discovery suggests that antagonizing PKP2 may be a new therapeutic opportunity to combat tumors in which activation of EGFR contributes to pathogenesis.
PURPOSE: Quantitative fundus autofluorescence (qAF) and spectral-domain optical coherence tomography (SD OCT) were performed in patients with bull's-eye maculopathy (BEM) to identify phenotypic markers that can aid in the differentiation of ABCA4-associated and non-ABCA4-associated disease. DESIGN: Prospective cross-sectional study at an academic referral center. SUBJECTS: Thirty-seven BEM patients (age range, 8-60 years) were studied. All patients exhibited a localized macular lesion exhibiting a smooth contour and qualitatively normal-appearing surrounding retina without flecks. Control values consisted of previously published data from 277 healthy subjects (374 eyes; age range, 5-60 years) without a family history of retinal dystrophy. METHODS: Autofluorescence (AF) images (30°, 488-nm excitation) were acquired with a confocal scanning laser ophthalmoscope equipped with an internal fluorescent reference to account for variable laser power and detector sensitivity. The grey levels (GLs) from 8 circularly arranged segments positioned at an eccentricity of approximately 7° to 9° in each image were calibrated to the reference (0 GL), magnification, and normative optical media density to yield qAF. In addition, horizontal SD OCT images through the fovea were obtained. All patients were screened for ABCA4 mutations using the ABCR600 microarray, next-generation sequencing, or both. MAIN OUTCOME MEASURES: Quantitative AF, correlations between AF and SD OCT, and genotyping for ABCA4 variants. RESULTS: ABCA4 mutations were identified in 22 patients, who tended to be younger (mean age, 21.9±8.3 years) than patients without ABCA4 mutations (mean age, 42.1±14.9 years). Whereas phenotypic differences were not obvious on the basis of qualitative fundus AF and SD OCT imaging, with qAF, the 2 groups of patients were clearly distinguishable. In the ABCA4-positive group, 37 of 41 eyes (19 of 22 patients) had qAF8 of more than the 95% confidence interval for age. Conversely, in the ABCA4-negative group, 22 of 26 eyes (13 of 15 patients) had qAF8 within the normal range. CONCLUSIONS: The qAF method can differentiate between ABCA4-associated and non-ABCA4-associated BEM and may guide clinical diagnosis and genetic testing.
PURPOSE: To design, fabricate, and evaluate novel materials to remove silicone oil (SiO) droplets from intraocular lenses (IOL) during vitreoretinal surgery. METHODS: Three different designs were fabricated using soft lithography of polydimethylsiloxane (PDMS), three-dimensional (3D) inverse PDMS fabrication using water dissolvable particles, and atomic layer deposition (ALD) of alumina (Al2O3) on surgical cellulose fibers. Laboratory tests included static and dynamic contact angle (CA) measurements with water and SiO, nondestructive x-ray microcomputer tomography (micro-CT), and microscopy. SiO removal was performed in vitro and ex vivo using implantable IOLs and explanted porcine eyes. RESULTS: All designs exhibited enhanced hydrophobicity and oleophilicity. Static CA measurements with water ranged from 131° to 160° and with SiO CA approximately 0° in 120 seconds following exposure. Nondestructive x-ray analysis of the 3D PDMS showed presence of interconnected polydispersed porosity of 100 to 300 μm in diameter. SiO removal from IOLs was achieved in vitro and ex vivo using standard 20-G vitrectomy instrumentation. CONCLUSION: Removal of SiO from IOLs can be achieved using materials with lower surface energy than that of the IOLs. This can be achieved using appropriate surface chemistry and surface topography. Three designs, with enhanced hydrophobic properties, were fabricated and tested in vitro and ex vivo. All materials remove SiO within an aqueous environment. Preliminary ex vivo results were very promising, opening new possibilities for SiO removal in vitreoretinal surgeries. TRANSLATIONAL RELEVANCE: This is the first report of an instrument that can lead to successful removal of SiO from the surface of IOL. In addition to the use of this instrument/material in medicine it can also be used in the industry, for example, retrieval of oil spills from bodies of water.
Proliferative vitreoretinopathy (PVR) is a nonneovascular blinding disease and the leading cause for failure in surgical repair of rhegmatogenous retinal detachments. Once formed, PVR is difficult to treat. Hence, there is an acute interest in developing approaches to prevent PVR. Of the many growth factors and cytokines that accumulate in vitreous as PVR develops, neutralizing vascular endothelial growth factor (VEGF) A has recently been found to prevent PVR in at least one animal model. The goal of this study was to test if Food and Drug Administration-approved agents could protect the eye from PVR in multiple animal models and to further investigate the underlying mechanisms. Neutralizing VEGF with aflibercept (VEGF Trap-Eye) safely and effectively protected rabbits from PVR in multiple models of disease. Furthermore, aflibercept reduced the bioactivity of both experimental and clinical PVR vitreous. Finally, although VEGF could promote some PVR-associated cellular responses via VEGF receptors expressed on the retinal pigment epithelial cells that drive this disease, VEGF's major contribution to vitreal bioactivity occurred via platelet-derived growth factor receptor α. Thus, VEGF promotes PVR by a noncanonical ability to engage platelet-derived growth factor receptor α. These findings indicate that VEGF contributes to nonangiogenic diseases and that anti-VEGF-based therapies may be effective on a wider spectrum of diseases than previously appreciated.
