Abstract
Interactions between tumor and stromal cells are well known to play a prominent roles in progression of pancreatic ductal adenocarcinoma (PDAC). As knowledge of stromal crosstalk in PDAC has evolved, it has become clear that cancer associated fibroblasts can play both tumor promoting and tumor suppressive roles through a combination of paracrine crosstalk and juxtacrine interactions involving direct physical contact. Another major contributor to dismal survival statistics for PDAC is development of resistance to chemotherapy drugs. Though less is known about how the acquisition of chemoresistance impacts upon tumor-stromal crosstalk. Here, we use 3D co-culture geometries to recapitulate juxtacrine interactions between epithelial and stromal cells. In particular, extracellular matrix (ECM) overlay cultures in which stromal cells (pancreatic stellate cells, or normal human fibroblasts) are placed adjacent to PDAC cells (PANC1), result in direct heterotypic cell adhesions accompanied by dramatic fibroblast contractility which leads to highly condensed macroscopic multicellular aggregates as detected using particle image velocimetry (PIV) analysis to quantify cell velocities over the course of time lapse movie sequences. To investigate how drug resistance impacts these juxtacrine interactions we contrast cultures in which PANC1 are substituted with a drug resistant subline (PANC1-OR) previously established in our lab. We find that heterotypic cell-cell interactions are highly suppressed in drug-resistant cells relative to the parental PANC1 cells. To investigate further we conduct RNA-seq and bioinformatics analysis to identify differential gene expression in PANC1 and PANC1-OR, which shows that negative regulation of cell adhesion molecules, consistent with increased epithelial mesenchymal transition (EMT), is also consistent with loss of hetrotypic cell-cell contact necessary for the contractile behavior observed in drug naïve cultures. Overall these findings elucidate the role of drug-resistance in inhibiting an avenue of stromal crosstalk which is associated with tumor suppression and also help to establish cell culture conditions useful for further mechanistic investigation.