Publications by Year: 2014

2014

Jiao, Alan L, and Frank J Slack. (2014) 2014. “RNA-Mediated Gene Activation”. Epigenetics 9 (1): 27-36. https://doi.org/10.4161/epi.26942.

The regulation of gene expression by non-coding RNAs (ncRNAs) has become a new paradigm in biology. RNA-mediated gene silencing pathways have been studied extensively, revealing diverse epigenetic and posttranscriptional mechanisms. In contrast, the roles of ncRNAs in activating gene expression remains poorly understood. In this review, we summarize the current knowledge of gene activation by small RNAs, long non-coding RNAs, and enhancer-derived RNAs, with an emphasis on epigenetic mechanisms.

Turner, Michael J, Alan L Jiao, and Frank J Slack. (2014) 2014. “Autoregulation of Lin-4 MicroRNA Transcription by RNA Activation (RNAa) in C. Elegans”. Cell Cycle (Georgetown, Tex.) 13 (5): 772-81. https://doi.org/10.4161/cc.27679.

The conserved lin-4 microRNA (miRNA) regulates the proper timing of stem cell fate decisions in C. elegans by regulating stemness genes such as lin-14 and lin-28. (1)(-) (3) While lin-4 is upregulated toward the end of the first larval stage and functions as an essential developmental timing "switch", little is known about how lin-4 expression is regulated. (4) Here we show that in C. elegans hypodermal seam cells, transcription of lin-4 is positively regulated by lin-4 itself. In these cells, lin-4 activates its own transcription through a conserved lin-4-complementary element (LCE) in its promoter. We further show that lin-4 is required to recruit RNA polymerase II to its own promoter, and that lin-4 overexpression is sufficient for autoactivation. Finally, we show that a protein complex specifically binds the LCE in vitro, and that mutations that abolish this binding also reduce the in vivo expression of a plin-4:GFP reporter. Thus, we describe the first in vivo evidence of RNA activation (RNAa) by an endogenous miRNA, and provide new insights into an elegant autoregulatory mechanism that ensures the proper timing of stem cell fate decisions in development.

Slack, Frank J. (2014) 2014. “In This Issue of Epigenetics: Special Focus on Non-Coding RNAs in Epigenetic Regulation”. Epigenetics 9 (1): 1-2. https://doi.org/10.4161/epi.27579.
Kim, Minlee, Xiaowei Chen, Lena J Chin, Trupti Paranjape, William C Speed, Kenneth K Kidd, Hongyu Zhao, Joanne B Weidhaas, and Frank J Slack. (2014) 2014. “Extensive Sequence Variation in the 3’ Untranslated Region of the KRAS Gene in Lung and Ovarian Cancer Cases”. Cell Cycle (Georgetown, Tex.) 13 (6): 1030-40. https://doi.org/10.4161/cc.27941.

While cancer is a serious health issue, there are very few genetic biomarkers that predict predisposition, prognosis, diagnosis, and treatment response. Recently, sequence variations that disrupt microRNA (miRNA)-mediated regulation of genes have been shown to be associated with many human diseases, including cancer. In an early example, a variant at one particular single nucleotide polymorphism (SNP) in a let-7 miRNA complementary site in the 3' untranslated region (3' UTR) of the KRAS gene was associated with risk and outcome of various cancers. The KRAS oncogene is an important regulator of cellular proliferation, and is frequently mutated in cancers. To discover additional sequence variants in the 3' UTR of KRAS with the potential as genetic biomarkers, we resequenced the complete region of the 3' UTR of KRAS in multiple non-small cell lung cancer and epithelial ovarian cancer cases either by Sanger sequencing or capture enrichment followed by high-throughput sequencing. Here we report a comprehensive list of sequence variations identified in cases, with some potentially dysregulating expression of KRAS by altering putative miRNA complementary sites. Notably, rs712, rs9266, and one novel variant may have a functional role in regulation of KRAS by disrupting complementary sites of various miRNAs, including let-7 and miR-181.

Adams, Brian D, Andrea L Kasinski, and Frank J Slack. (2014) 2014. “Aberrant Regulation and Function of MicroRNAs in Cancer”. Current Biology : CB 24 (16): R762-76. https://doi.org/10.1016/j.cub.2014.06.043.

Malignant neoplasms are consistently among the top four leading causes of death in all age groups in the United States, despite a concerted effort toward developing novel therapeutic approaches. Our understanding of and therapeutic strategy for treating each of these neoplastic diseases have been improved through decades of research on the genetics, signaling pathways, and cellular biology that govern tumor cell initiation, progression and maintenance. Much of this work has concentrated on post-translational modifications and abnormalities at the DNA level, including point mutations, amplifications/deletions, and chromosomal translocations, and how these aberrant events affect the expression and function of protein-coding genes. Only recently has a novel class of conserved gene regulatory molecules been identified as a major contributor to malignant neoplastic disease. This review focuses on how these small non-coding RNA molecules, termed microRNAs (miRNAs), can function as oncogenes or tumor suppressors, and how the misexpression of miRNAs and dysregulation of factors that regulate miRNAs contribute to the tumorigenic process. Specific focus is given to more recently discovered regulatory mechanisms that go awry in cancer, and how these changes alter miRNA expression, processing, and function.

De Chu, Yu-, Wei-Chieh Wang, Shi-An A Chen, Yen-Ting Hsu, Meng-Wei Yeh, Frank J Slack, and Shih-Peng Chan. (2014) 2014. “RACK-1 Regulates Let-7 MicroRNA Expression and Terminal Cell Differentiation in Caenorhabditis Elegans”. Cell Cycle (Georgetown, Tex.) 13 (12): 1995-2009. https://doi.org/10.4161/cc.29017.

The let-7 microRNA (miRNA) regulates cell cycle exit and terminal differentiation in the C. elegans heterochronic gene pathway. Low expression of let-7 results in retarded vulva and hypodermal cell development in C. elegans and has been associated with several human cancers. Previously, the versatile scaffold protein receptor for activated C kinase 1 (RACK1) was proposed to facilitate recruitment of the miRNA-induced silencing complex (miRISC) to the polysome and to be required for miRNA function in C. elegans and humans. Here, we show that depletion of C. elegans RACK-1 by RNAi increases let-7 miRNA levels and suppresses the retarded terminal differentiation of lateral hypodermal seam cells in mutants carrying the hypomorphic let-7(n2853) allele or lacking the let-7 family miRNA genes mir-48 and mir-241. Depletion of RACK-1 also increases the levels of precursor let-7 miRNA. When Dicer is knocked down and pre-miRNA processing is inhibited, depletion of RACK-1 still leads to increased levels of pre-let-7, suggesting that RACK-1 affects a biogenesis mechanism upstream of Dicer. No changes in the activity of the let-7 promoter or the levels of primary let-7 miRNA are associated with depletion of RACK-1, suggesting that RACK-1 affects let-7 miRNA biogenesis at the post-transcriptional level. Interestingly, rack-1 knockdown also increases the levels of a few other precursor miRNAs. Our results reveal that RACK-1 controls the biogenesis of a subset of miRNAs, including let-7, and in this way plays a role in the heterochronic gene pathway during C. elegans development.

Smith-Vikos, Thalyana, Alexandre de Lencastre, Sachi Inukai, Mariel Shlomchik, Brandon Holtrup, and Frank J Slack. (2014) 2014. “MicroRNAs Mediate Dietary-Restriction-Induced Longevity through PHA-4/FOXA and SKN-1/Nrf Transcription Factors”. Current Biology : CB 24 (19): 2238-46. https://doi.org/10.1016/j.cub.2014.08.013.

BACKGROUND: Dietary restriction (DR) has been shown to prolong longevity across diverse taxa, yet the mechanistic relationship between DR and longevity remains unclear. MicroRNAs (miRNAs) control aging-related functions such as metabolism and lifespan through regulation of genes in insulin signaling, mitochondrial respiration, and protein homeostasis.

RESULTS: We have conducted a network analysis of aging-associated miRNAs connected to transcription factors PHA-4/FOXA and SKN-1/Nrf, which are both necessary for DR-induced lifespan extension in Caenorhabditis elegans. Our network analysis has revealed extensive regulatory interactions between PHA-4, SKN-1, and miRNAs and points to two aging-associated miRNAs, miR-71 and miR-228, as key nodes of this network. We show that miR-71 and miR-228 are critical for the response to DR in C. elegans. DR induces the expression of miR-71 and miR-228, and the regulation of these miRNAs depends on PHA-4 and SKN-1. In turn, we show that PHA-4 and SKN-1 are negatively regulated by miR-228, whereas miR-71 represses PHA-4.

CONCLUSIONS: Based on our findings, we have discovered new links in an important pathway connecting DR to aging. By interacting with PHA-4 and SKN-1, miRNAs transduce the effect of dietary-restriction-mediated lifespan extension in C. elegans. Given the conservation of miRNAs, PHA-4, and SKN-1 across phylogeny, these interactions are likely to be conserved in more-complex species.

Gerstein, Mark B, Joel Rozowsky, Koon-Kiu Yan, Daifeng Wang, Chao Cheng, James B Brown, Carrie A Davis, et al. (2014) 2014. “Comparative Analysis of the Transcriptome across Distant Species”. Nature 512 (7515): 445-8. https://doi.org/10.1038/nature13424.

The transcriptome is the readout of the genome. Identifying common features in it across distant species can reveal fundamental principles. To this end, the ENCODE and modENCODE consortia have generated large amounts of matched RNA-sequencing data for human, worm and fly. Uniform processing and comprehensive annotation of these data allow comparison across metazoan phyla, extending beyond earlier within-phylum transcriptome comparisons and revealing ancient, conserved features. Specifically, we discover co-expression modules shared across animals, many of which are enriched in developmental genes. Moreover, we use expression patterns to align the stages in worm and fly development and find a novel pairing between worm embryo and fly pupae, in addition to the embryo-to-embryo and larvae-to-larvae pairings. Furthermore, we find that the extent of non-canonical, non-coding transcription is similar in each organism, per base pair. Finally, we find in all three organisms that the gene-expression levels, both coding and non-coding, can be quantitatively predicted from chromatin features at the promoter using a 'universal model' based on a single set of organism-independent parameters.

Kim, Minlee, and Frank J Slack. (2014) 2014. “MicroRNA-Mediated Regulation of KRAS in Cancer”. Journal of Hematology & Oncology 7: 84. https://doi.org/10.1186/s13045-014-0084-2.

While microRNAs (miRNAs) and the KRAS oncogene are known to be dysregulated in various cancers, little is known about the role of miRNAs in the regulation of KRAS in cancer. Here we review a selection of studies published in 2014 that have contributed to our understanding of the molecular mechanisms of KRAS regulation by miRNAs and the clinical relevance of sequence variants that may interfere with functional miRNA-mediated KRAS regulation.

Anastasiadou, Eleni, and Frank J Slack. (2014) 2014. “Cancer. Malicious Exosomes”. Science (New York, N.Y.) 346 (6216): 1459-60. https://doi.org/10.1126/science.aaa4024.