Publications by Year: 2019

2019

Kang, Yoon-Suk, Daniel A Brown, and James E Kirby. (2019) 2019. “Brucella Neotomae Recapitulates Attributes of Zoonotic Human Disease in a Murine Infection Model.”. Infection and Immunity 87 (1). https://doi.org/10.1128/IAI.00255-18.

Members of the genus Brucella are Gram-negative pathogens that cause chronic systemic infection in farm animals and zoonotic infection in humans. Study of the genus Brucella has been hindered by the need for biosafety level 3 select agent containment. Brucella neotomae, originally isolated from the desert pack rat, presented an opportunity to develop an alternative, non-select agent experimental model. Our prior in vitro work indicated that the cell biology and type IV secretion system (T4SS) dependence of B. neotomae intracellular replication were similar to observations for human-pathogenic select agent Brucella species. Therefore, here, we investigated the pathobiology of B. neotomae infection in the BALB/c mouse. During a sustained infectious course, B. neotomae replicated and persisted in reticuloendothelial organs. Bioluminescent imaging and histopathological and PCR-based analysis demonstrated that the T4SS contributed to efficient early infection of the liver, spleen, and lymph nodes; granuloma formation and hepatosplenomegaly; and early induction of Th1-associated cytokine gene expression. The infectious course and pathologies in the murine model showed similarity to prior observations of primate and native host infection with zoonotic Brucella species. Therefore, the B. neotomae BALB/c infection model offers a promising system to accelerate and complement experimental work in the genus Brucella.

Brennan-Krohn, Thea, and James E Kirby. (2019) 2019. “Antimicrobial Synergy Testing by the Inkjet Printer-Assisted Automated Checkerboard Array and the Manual Time-Kill Method.”. Journal of Visualized Experiments : JoVE, no. 146. https://doi.org/10.3791/58636.

As rates of multidrug-resistant (MDR) pathogens continue to rise, outpacing the development of new antimicrobials, novel approaches to treatment of MDR bacteria are increasingly becoming a necessity. One such approach is combination therapy, in which two or more antibiotics are used together to treat an infection against which one or both of the drugs may be ineffective alone. When two drugs, in combination, exert a greater than additive effect, they are considered synergistic. In vitro investigation of synergistic activity is an important first step in evaluating the possible efficacy of drug combinations. Two main in vitro synergy testing methods have been developed: the checkerboard array and the time-kill study. In this paper, we present an automated checkerboard array method that makes use of inkjet printing technology to increase the efficiency and accuracy of this technique, as well as a standard manual time-kill synergy method. The automated checkerboard array can serve as a high-throughput screening assay, while the manual time-kill study provides additional, complementary data on synergistic activity and killing. The checkerboard array is a modification of standard minimum inhibitory concentration (MIC) testing, in which bacteria are incubated with antibiotics at different concentration combinations and evaluated for growth inhibition after overnight incubation. Manual performance of the checkerboard array requires a laborious and error-prone series of calculations and dilutions. In the automated method presented here, the calculation and dispensing of required antibiotic stock solution volumes are automated through the use of inkjet printer technology. In the time-kill synergy assay, bacteria are incubated with the antibiotics of interest, both together and individually, and sampled at intervals over the course of 24 h for quantitative culture. The results can determine whether a combination is synergistic and whether it is bactericidal, and provide data on inhibition and killing of bacteria over time.

Riedel, Stefan, Divya Vijayakumar, Gretchen Berg, Anthony D Kang, Kenneth P Smith, and James E Kirby. (2019) 2019. “Evaluation of Apramycin Against Spectinomycin-Resistant and -Susceptible Strains of Neisseria Gonorrhoeae.”. The Journal of Antimicrobial Chemotherapy 74 (5): 1311-16. https://doi.org/10.1093/jac/dkz012.

BACKGROUND: The emergence of Neisseria gonorrhoeae resistant to all currently available antimicrobial therapies poses a dire public health threat. New antimicrobial agents with activity against N. gonorrhoeae are urgently needed. Apramycin is an aminocyclitol aminoglycoside with broad-spectrum in vitro activity against MDR Gram-negative pathogens and Staphylococcus aureus. However, its activity against N. gonorrhoeae has not been described.

OBJECTIVES: The activity spectrum of apramycin against a collection of MDR N. gonorrhoeae was assessed. Isolates tested included those susceptible and resistant to the structurally distinct aminocyclitol, spectinomycin.

RESULTS: The modal MICs for apramycin and spectinomycin were 16 mg/L and 32 mg/L, respectively. The epidemiological cut-off (ECOFF) for apramycin was 64 mg/L. No strains among 77 tested had an MIC above this ECOFF, suggesting very low levels of acquired apramycin resistance. In time-kill analysis, apramycin demonstrated rapid bactericidal activity comparable to that of spectinomycin.

CONCLUSIONS: Apramycin has broad-spectrum, rapidly bactericidal activity against N. gonorrhoeae. Future pharmacokinetic and pharmacodynamic studies will be needed to determine whether apramycin and/or apramycin derivatives hold promise as new therapeutics for N. gonorrhoeae infection.

Brennan-Krohn, Thea, and James E Kirby. (2019) 2019. “When One Drug Is Not Enough: Context, Methodology, and Future Prospects in Antibacterial Synergy Testing.”. Clinics in Laboratory Medicine 39 (3): 345-58. https://doi.org/10.1016/j.cll.2019.04.002.

Antibacterial combinations have long been used to accomplish a variety of therapeutic goals, including prevention of resistance and enhanced antimicrobial activity. In vitro synergy testing methods, including the checkerboard array, the time-kill study, diffusion assays, and pharmacokinetic/pharmacodynamic models, are used commonly in the research setting, but are not routinely performed in the clinical microbiology laboratory because of test complexity and uncertainty about their predictive value for patient outcomes. Optimized synergy testing techniques and better data on the relationship between in vitro results and clinical outcomes are needed to guide the rational use of antimicrobial combinations in the multidrug resistance era.

Brucella is an intracellular bacterial pathogen that causes chronic systemic infection in domesticated livestock and poses a zoonotic infectious risk to humans. The virulence of Brucella is critically dependent on its ability to replicate and survive within host macrophages. Brucella modulates host physiological pathways and cell biology in order to establish a productive intracellular replicative niche. Conversely, the host cell presumably activates pathways that limit infection. To identify host pathways contributing to this yin and yang during host cell infection, we performed a high-throughput chemical genetics screen of known inhibitors and agonists of host cell targets to identify host factors that contribute to intracellular growth of the model pathogen Brucella neotomae Using this approach, we identified the p38 mitogen-activated protein (MAP) kinase pathway and autophagy machinery as both a linchpin and an Achilles' heel in B. neotomae's ability to coopt host cell machinery and replicate within macrophages. Specifically, B. neotomae induced p38 MAP kinase phosphorylation and autophagy in a type IV secretion system-dependent fashion. Both p38 MAP kinase stimulation and an intact autophagy machinery in turn were required for phagosome maturation and intracellular replication. These findings contrasted with those for Legionella pneumophila, where chemical inhibition of the p38 MAP kinase pathway and autophagy factor depletion failed to block intracellular replication. Therefore, results from a chemical genetics screen suggest that intersections of the MAP kinase pathways and autophagy machinery are critical components of Brucella's intracellular life cycle.

Lee, Rose A, and James E Kirby. (2019) 2019. “We Cannot Do It Alone: The Intersection of Public Health, Public Policy, and Clinical Microbiology.”. Clinics in Laboratory Medicine 39 (3): 499-508. https://doi.org/10.1016/j.cll.2019.05.008.

Infectious diseases by definition spread and therefore have impact beyond local hospitals and institutions where they occur. With increasingly complex and worrisome infectious disease evolution including emergence of multidrug resistance, regional, national, and international agencies and resources must work hand in hand with local clinical microbiology laboratories to address these global threats. Described are examples of such resources, both existing and aspirational, that will be needed to address the infectious disease challenges ahead. The authors comment on several instances of entrenched policy that are nonproductive and may be worthy of revision to address unmet needs in infectious disease diagnostics.

Smith, Kenneth P, Matthew G Dowgiallo, Lucius Chiaraviglio, Prakash Parvatkar, Chungsik Kim, Roman Manetsch, and James E Kirby. (2019) 2019. “A Whole-Cell Screen for Adjunctive and Direct Antimicrobials Active Against Carbapenem-Resistant Enterobacteriaceae.”. SLAS Discovery : Advancing Life Sciences R & D 24 (8): 842-53. https://doi.org/10.1177/2472555219859592.

Carbapenem-resistant Enterobacteriaceae (CRE) are an emerging antimicrobial resistance threat for which few if any therapeutic options remain. Identification of new agents that either inhibit CRE or restore activity of existing antimicrobials is highly desirable. Therefore, a high-throughput screen of 182,427 commercially available compounds was used to identify small molecules which either enhanced activity of meropenem against a carbapenem-resistant Klebsiella pneumoniae ST258 screening strain and/or directly inhibited its growth. The primary screening methodology was a whole-cell screen/counterscreen combination assay that tested for reduction of microbial growth in the presence or absence of meropenem, respectively. Screening hits demonstrating eukaryotic cell toxicity based on an orthogonal screening effort or identified as pan-assay interference compounds (PAINS) by computational methods were triaged. Primary screening hits were then clustered and ranked according to favorable physicochemical properties. Among remaining hits, we found 10 compounds that enhanced activity of carbapenems against a subset of CRE. Direct antimicrobials that passed toxicity and PAINS filters were not, however, identified in this relatively large screening effort. It was previously shown that the same screening strategy was productive for identifying candidates for further development when screening known bioactive libraries inclusive of natural products. Our findings therefore further highlight liabilities of commercially available small-molecule screening libraries in the Gram-negative antimicrobial space. In particular, there was especially low yield in identifying compelling activity against a representative, highly multidrug-resistant, carbapenemase-producing K. pneumoniae strain.

Kirby, James E, Thea Brennan-Krohn, and Kenneth P Smith. (2019) 2019. “Bringing Antimicrobial Susceptibility Testing for New Drugs into the Clinical Laboratory: Removing Obstacles in Our Fight Against Multidrug-Resistant Pathogens.”. Journal of Clinical Microbiology 57 (12). https://doi.org/10.1128/JCM.01270-19.

There are now several new antibiotics available to treat multidrug-resistant pathogens, and susceptibility testing methods for these drugs are increasingly available at the time of drug approval. However, lack of clarity regarding verification requirements remains a formidable barrier to introducing such testing in clinical laboratories, making these drugs practically unavailable for patient use. We propose a change in the framework for bringing in testing for new antibiotics, focusing on quality control rather than underpowered verification studies.