Publications

2021

Ngo, Debby, Mark D Benson, Jonathan Z Long, Zsu-Zsu Chen, Ruiqi Wang, Anjali K Nath, Michelle J Keyes, et al. (2021) 2021. “Proteomic Profiling Reveals Biomarkers and Pathways in Type 2 Diabetes Risk.”. JCI Insight 6 (5). https://doi.org/10.1172/jci.insight.144392.

Recent advances in proteomic technologies have made high-throughput profiling of low-abundance proteins in large epidemiological cohorts increasingly feasible. We investigated whether aptamer-based proteomic profiling could identify biomarkers associated with future development of type 2 diabetes (T2DM) beyond known risk factors. We identified dozens of markers with highly significant associations with future T2DM across 2 large longitudinal cohorts (n = 2839) followed for up to 16 years. We leveraged proteomic, metabolomic, genetic, and clinical data from humans to nominate 1 specific candidate to test for potential causal relationships in model systems. Our studies identified functional effects of aminoacylase 1 (ACY1), a top protein association with future T2DM risk, on amino acid metabolism and insulin homeostasis in vitro and in vivo. Furthermore, a loss-of-function variant associated with circulating levels of the biomarker WAP, Kazal, immunoglobulin, Kunitz, and NTR domain-containing protein 2 (WFIKKN2) was, in turn, associated with fasting glucose, hemoglobin A1c, and HOMA-IR measurements in humans. In addition to identifying potentially novel disease markers and pathways in T2DM, we provide publicly available data to be leveraged for insights about gene function and disease pathogenesis in the context of human metabolism.

See also: Proteomics
Katz, Daniel H, Usman A Tahir, Debby Ngo, Mark D Benson, Yan Gao, Xu Shi, Matthew Nayor, et al. (2021) 2021. “Multiomic Profiling in Black and White Populations Reveals Novel Candidate Pathways in Left Ventricular Hypertrophy and Incident Heart Failure Specific to Black Adults.”. Circulation. Genomic and Precision Medicine 14 (3): e003191. https://doi.org/10.1161/CIRCGEN.120.003191.

BACKGROUND: Increased left ventricular (LV) mass is associated with adverse cardiovascular events including heart failure (HF). Both increased LV mass and HF disproportionately affect Black individuals. To understand the underlying mechanisms, we undertook a proteomic screen in a Black cohort and compared the findings to results from a White cohort.

METHODS: We measured 1305 plasma proteins using the SomaScan platform in 1772 Black participants (mean age, 56 years; 62% women) in JHS (Jackson Heart Study) with LV mass assessed by 2-dimensional echocardiography. Incident HF was assessed in 1600 participants. We then compared protein associations in JHS to those observed in White participants from FHS (Framingham Heart Study; mean age, 54 years; 56% women).

RESULTS: In JHS, there were 110 proteins associated with LV mass and 13 proteins associated with incident HF hospitalization with false discovery rate <5% after multivariable adjustment. Several proteins showed expected associations with both LV mass and HF, including NT-proBNP (N-terminal pro-B-type natriuretic peptide; β=0.04; P=2×10-8; hazard ratio, 1.48; P=0.0001). The strongest association with LV mass was novel: LKHA4 (leukotriene-A4 hydrolase; β=0.05; P=5×10-15). This association was confirmed on an alternate proteomics platform and further supported by related metabolomic data. Fractalkine/CX3CL1 (C-X3-C Motif Chemokine Ligand 1) showed a novel association with incident HF (hazard ratio, 1.32; P=0.0002). While established biomarkers such as cystatin C and NT-proBNP showed consistent associations in Black and White individuals, LKHA4 and fractalkine were significantly different between the two groups.

CONCLUSIONS: We identified several novel biological pathways specific to Black adults hypothesized to contribute to the pathophysiologic cascade of LV hypertrophy and incident HF including LKHA4 and fractalkine.

See also: Multi-omics

2020

Katz, Daniel H, Usman A Tahir, Debby Ngo, Mark D Benson, Alexander G Bick, Akhil Pampana, Yan Gao, et al. (2020) 2020. “Proteomic Profiling in Biracial Cohorts Implicates DC-SIGN As a Mediator of Genetic Risk in COVID-19.”. MedRxiv : The Preprint Server for Health Sciences. https://doi.org/10.1101/2020.06.09.20125690.

COVID-19 is one of the most consequential pandemics in the last century, yet the biological mechanisms that confer disease risk are incompletely understood. Further, heterogeneity in disease outcomes is influenced by race, though the relative contributions of structural/social and genetic factors remain unclear. Very recent unpublished work has identified two genetic risk loci that confer greater risk for respiratory failure in COVID-19: the ABO locus and the 3p21.31 locus. To understand how these loci might confer risk and whether this differs by race, we utilized proteomic profiling and genetic information from three cohorts including black and white participants to identify proteins influenced by these loci. We observed that variants in the ABO locus are associated with levels of CD209/DC-SIGN, a known binding protein for SARS-CoV and other viruses, as well as multiple inflammatory and thrombotic proteins, while the 3p21.31 locus is associated with levels of CXCL16, a known inflammatory chemokine. Thus, integration of genetic information and proteomic profiling in biracial cohorts highlights putative mechanisms for genetic risk in COVID-19 disease.

See also: Multi-omics
Chen, Zhifen, Haojie Yu, Xu Shi, Curtis R Warren, Luca A Lotta, Max Friesen, Torsten B Meissner, et al. (2020) 2020. “Functional Screening of Candidate Causal Genes for Insulin Resistance in Human Preadipocytes and Adipocytes.”. Circulation Research 126 (3): 330-46. https://doi.org/10.1161/CIRCRESAHA.119.315246.

Rationale: Genome-wide association studies have identified genetic loci associated with insulin resistance (IR) but pinpointing the causal genes of a risk locus has been challenging. Objective: To identify candidate causal genes for IR, we screened regional and biologically plausible genes (16 in total) near the top 10 IR-loci in risk-relevant cell types, namely preadipocytes and adipocytes. Methods and Results: We generated 16 human Simpson-Golabi-Behmel syndrome preadipocyte knockout lines each with a single IR-gene knocked out by lentivirus-mediated CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 system. We evaluated each gene knockout by screening IR-relevant phenotypes in the 3 insulin-sensitizing mechanisms, including adipogenesis, lipid metabolism, and insulin signaling. We performed genetic analyses using data on the genotype-tissue expression portal expression quantitative trait loci database and accelerating medicines partnership type 2 diabetes mellitus Knowledge Portal to evaluate whether candidate genes prioritized by our in vitro studies were expression quantitative trait loci genes in human subcutaneous adipose tissue, and whether expression of these genes is associated with risk of IR, type 2 diabetes mellitus, and cardiovascular diseases. We further validated the functions of 3 new adipose IR genes by overexpression-based phenotypic rescue in the Simpson-Golabi-Behmel syndrome preadipocyte knockout lines. Twelve genes, PPARG, IRS-1, FST, PEPD, PDGFC, MAP3K1, GRB14, ARL15, ANKRD55, RSPO3, COBLL1, and LYPLAL1, showed diverse phenotypes in the 3 insulin-sensitizing mechanisms, and the first 7 of these genes could affect all the 3 mechanisms. Five out of 6 expression quantitative trait loci genes are among the top candidate causal genes and the abnormal expression levels of these genes (IRS-1, GRB14, FST, PEPD, and PDGFC) in human subcutaneous adipose tissue could be associated with increased risk of IR, type 2 diabetes mellitus, and cardiovascular disease. Phenotypic rescue by overexpression of the candidate causal genes (FST, PEPD, and PDGFC) in the Simpson-Golabi-Behmel syndrome preadipocyte knockout lines confirmed their function in adipose IR. Conclusions: Twelve genes showed diverse phenotypes indicating differential roles in insulin sensitization, suggesting mechanisms bridging the association of their genomic loci with IR. We prioritized PPARG, IRS-1, GRB14, MAP3K1, FST, PEPD, and PDGFC as top candidate genes. Our work points to novel roles for FST, PEPD, and PDGFC in adipose tissue, with consequences for cardiometabolic diseases.

See also: Multi-omics
Nayor, Matthew, Meghan I Short, Humaira Rasheed, Honghuang Lin, Christian Jonasson, Qiong Yang, Kristian Hveem, et al. (2020) 2020. “Aptamer-Based Proteomic Platform Identifies Novel Protein Predictors of Incident Heart Failure and Echocardiographic Traits.”. Circulation. Heart Failure 13 (5): e006749. https://doi.org/10.1161/CIRCHEARTFAILURE.119.006749.

BACKGROUND: We used a large-scale, high-throughput DNA aptamer-based discovery proteomic platform to identify circulating biomarkers of cardiac remodeling and incident heart failure (HF) in community-dwelling individuals.

METHODS: We evaluated 1895 FHS (Framingham Heart Study) participants (age 55±10 years, 54% women) who underwent proteomic profiling and echocardiography. Plasma levels of 1305 proteins were related to echocardiographic traits and to incident HF using multivariable regression. Statistically significant protein-HF associations were replicated in the HUNT (Nord-Trøndelag Health) study (n=2497, age 63±10 years, 43% women), and results were meta-analyzed. Genetic variants associated with circulating protein levels (pQTLs) were related to echocardiographic traits in the EchoGen (n=30 201) and to incident HF in the CHARGE (n=20 926) consortia.

RESULTS: Seventeen proteins associated with echocardiographic traits in cross-sectional analyses (false discovery rate <0.10), and 8 of these proteins had pQTLs associated with echocardiographic traits in EchoGen (P<0.0007). In Cox models adjusted for clinical risk factors, 29 proteins demonstrated associations with incident HF in FHS (174 HF events, mean follow-up 19 [limits, 0.2-23.7] years). In meta-analyses of FHS and HUNT, 6 of these proteins were associated with incident HF (P<3.8×10-5; 3 with higher risk: NT-proBNP [N-terminal proB-type natriuretic peptide], TSP2 [thrombospondin-2], MBL [mannose-binding lectin]; and 3 with lower risk: ErbB1 [epidermal growth factor receptor], GDF-11/8 [growth differentiation factor-11/8], and RGMC [hemojuvelin]). For 5 of the 6 proteins, pQTLs were associated with echocardiographic traits (P<0.0006) in EchoGen, and for RGMC, a protein quantitative trait loci was associated with incident HF (P=0.001).

CONCLUSIONS: A large-scale proteomics approach identified new predictors of cardiac remodeling and incident HF. Future studies are warranted to elucidate how biological pathways represented by these proteins may mediate cardiac remodeling and HF risk and to assess if these proteins can improve HF risk prediction.

See also: Proteomics
Ngo, Debby, Donghai Wen, Yan Gao, Michelle J Keyes, Erika R Drury, Dan H Katz, Mark D Benson, et al. (2020) 2020. “Circulating Testican-2 Is a Podocyte-Derived Marker of Kidney Health.”. Proceedings of the National Academy of Sciences of the United States of America 117 (40): 25026-35. https://doi.org/10.1073/pnas.2009606117.

In addition to their fundamental role in clearance, the kidneys release select molecules into the circulation, but whether any of these anabolic functions provides insight on kidney health is unknown. Using aptamer-based proteomics, we characterized arterial (A)-to-renal venous (V) gradients for >1,300 proteins in 22 individuals who underwent invasive sampling. Although most of the proteins that changed significantly decreased from A to V, consistent with renal clearance, several were found to increase, the most significant of which was testican-2. To assess the clinical implications of these physiologic findings, we examined proteomic data in the Jackson Heart Study (JHS), an African-American cohort (n = 1,928), with replication in the Framingham Heart Study (FHS), a White cohort (n = 1,621). In both populations, testican-2 had a strong, positive correlation with estimated glomerular filtration rate (eGFR). In addition, higher baseline testican-2 levels were associated with a lower rate of eGFR decline in models adjusted for age, gender, hypertension, type 2 diabetes, body mass index, baseline eGFR, and albuminuria. Glomerular expression of testican-2 in human kidneys was demonstrated by immunohistochemistry, immunofluorescence, and electron microscopy, while single-cell RNA sequencing of human kidneys showed expression of the cognate gene, SPOCK2, exclusively in podocytes. In vitro, testican-2 increased glomerular endothelial tube formation and motility, raising the possibility that its secretion has a functional role within the glomerulus. Taken together, our findings identify testican-2 as a podocyte-derived biomarker of kidney health and prognosis.

See also: Proteomics

2019

Roh, Jason D, Ryan Hobson, Vinita Chaudhari, Pablo Quintero, Ashish Yeri, Mark Benson, Chunyang Xiao, et al. (2019) 2019. “Activin Type II Receptor Signaling in Cardiac Aging and Heart Failure.”. Science Translational Medicine 11 (482). https://doi.org/10.1126/scitranslmed.aau8680.

Activin type II receptor (ActRII) ligands have been implicated in muscle wasting in aging and disease. However, the role of these ligands and ActRII signaling in the heart remains unclear. Here, we investigated this catabolic pathway in human aging and heart failure (HF) using circulating follistatin-like 3 (FSTL3) as a potential indicator of systemic ActRII activity. FSTL3 is a downstream regulator of ActRII signaling, whose expression is up-regulated by the major ActRII ligands, activin A, circulating growth differentiation factor-8 (GDF8), and GDF11. In humans, we found that circulating FSTL3 increased with aging, frailty, and HF severity, correlating with an increase in circulating activins. In mice, increasing circulating activin A increased cardiac ActRII signaling and FSTL3 expression, as well as impaired cardiac function. Conversely, ActRII blockade with either clinical-stage inhibitors or genetic ablation reduced cardiac ActRII signaling while restoring or preserving cardiac function in multiple models of HF induced by aging, sarcomere mutation, or pressure overload. Using unbiased RNA sequencing, we show that activin A, GDF8, and GDF11 all induce a similar pathologic profile associated with up-regulation of the proteasome pathway in mammalian cardiomyocytes. The E3 ubiquitin ligase, Smurf1, was identified as a key downstream effector of activin-mediated ActRII signaling, which increased proteasome-dependent degradation of sarcoplasmic reticulum Ca2+ ATPase (SERCA2a), a critical determinant of cardiomyocyte function. Together, our findings suggest that increased activin/ActRII signaling links aging and HF pathobiology and that targeted inhibition of this catabolic pathway holds promise as a therapeutic strategy for multiple forms of HF.

See also: Proteomics
Egerstedt, Anna, John Berntsson, Maya Landenhed Smith, Olof Gidlöf, Roland Nilsson, Mark Benson, Quinn S Wells, et al. (2019) 2019. “Profiling of the Plasma Proteome across Different Stages of Human Heart Failure.”. Nature Communications 10 (1): 5830. https://doi.org/10.1038/s41467-019-13306-y.

Heart failure (HF) is a major public health problem characterized by inability of the heart to maintain sufficient output of blood. The systematic characterization of circulating proteins across different stages of HF may provide pathophysiological insights and identify therapeutic targets. Here we report application of aptamer-based proteomics to identify proteins associated with prospective HF incidence in a population-based cohort, implicating modulation of immunological, complement, coagulation, natriuretic and matrix remodeling pathways up to two decades prior to overt disease onset. We observe further divergence of these proteins from the general population in advanced HF, and regression after heart transplantation. By leveraging coronary sinus samples and transcriptomic tools, we describe likely cardiac and specific cellular origins for several of the proteins, including Nt-proBNP, thrombospondin-2, interleukin-18 receptor, gelsolin, and activated C5. Our findings provide a broad perspective on both cardiac and systemic factors associated with HF development.

See also: Proteomics
Ko, Darae, Mark D Benson, Debby Ngo, Qiong Yang, Martin G Larson, Thomas J Wang, Ludovic Trinquart, et al. (2019) 2019. “Proteomics Profiling and Risk of New-Onset Atrial Fibrillation: Framingham Heart Study.”. Journal of the American Heart Association 8 (6): e010976. https://doi.org/10.1161/JAHA.118.010976.

Background Prior studies relating proteomics markers to incident AF screened for limited numbers of proteins. Methods and Results We performed proteomics assays among participants from the Framingham Heart Study Offspring attending their fifth examination. Plasma protein levels (n=1373) were measured by the SOMAscan proteomic profiling platform. We used robust inference for the Cox proportional hazards model to relate each protein level with incident AF. In addition, we examined the association between AF-related genetic loci and levels of proteins associated with AF. Our study included 1885 participants (mean age 55±10 years, 54% women) who had proteomic profiles measured. A total of 349 participants developed AF during follow-up (mean follow-up 18.3 years). We observed that 8 proteins were significantly associated with incident AF after adjusting for age, sex, technical covariates, and correction for multiple testing ( P<0.05/1373=3.6×10-5). After additional adjustments for clinical factors associated with AF, ADAMTS13 and N-terminal pro-B-type natriuretic peptide remained significantly associated with the risk of incident AF (hazard ratio, 0.78; 95% CI, 0.70-0.88; and 1.44; 95% CI, 1.22-1.70, respectively; P<3.6×10-5 for both). None of the 8 proteins were encoded by genes at AF-related genetic loci previously identified by genome-wide association studies. Conclusions We identified 8 proteins associated with risk of incident AF after adjustment for age and sex; 2 proteins were associated with AF after adjustment for AF risk factors. Future studies are needed to replicate our findings, identify whether the markers are mechanistically related to AF development, and whether they are clinically useful for identification of future AF risk.

See also: Proteomics
Farmer, Jocelyn R, Hugues Allard-Chamard, Na Sun, Maimuna Ahmad, Alice Bertocchi, Vinay S Mahajan, Toby Aicher, et al. (2019) 2019. “Induction of Metabolic Quiescence Defines the Transitional to Follicular B Cell Switch.”. Science Signaling 12 (604). https://doi.org/10.1126/scisignal.aaw5573.

Transitional B cells must actively undergo selection for self-tolerance before maturing into their resting follicular B cell successors. We found that metabolic quiescence was acquired at the follicular B cell stage in both humans and mice. In follicular B cells, the expression of genes involved in ribosome biogenesis, aerobic respiration, and mammalian target of rapamycin complex 1 (mTORC1) signaling was reduced when compared to that in transitional B cells. Functional metabolism studies, profiling of whole-cell metabolites, and analysis of cell surface proteins in human B cells suggested that this transition was also associated with increased extracellular adenosine salvage. Follicular B cells increased the abundance of the cell surface ectonucleotidase CD73, which coincided with adenosine 5'-monophosphate-activated protein kinase (AMPK) activation. Differentiation to the follicular B cell stage in vitro correlated with surface acquisition of CD73 on human transitional B cells and was augmented with the AMPK agonist, AICAR. Last, individuals with gain-of-function PIK3CD (PI3Kδ) mutations and increased pS6 activation exhibited a near absence of circulating follicular B cells. Together, our data suggest that mTORC1 attenuation may be necessary for human follicular B cell development. These data identify a distinct metabolic switch during human B cell development at the transitional to follicular stages, which is characterized by an induction of extracellular adenosine salvage, AMPK activation, and the acquisition of metabolic quiescence.

See also: Metabolomics