The Role of Inflammation after Surgery for Elders (RISE) study: Examination of [11C]PBR28 binding and exploration of its link to post-operative delirium.

Abstract

Major surgery is associated with a systemic inflammatory cascade that is thought, in some cases, to contribute to transient and/or sustained cognitive decline, possibly through neuroinflammatory mechanisms. However, the relationship between surgery, peripheral and central nervous system inflammation, and post-operative cognitive outcomes remains unclear in humans, primarily owing to limitations of in vivo biomarkers of neuroinflammation which vary in sensitivity, specificity, validity, and reliability. In the present study, [11C]PBR28 positron emission tomography, cerebrospinal fluid (CSF), and blood plasma biomarkers of inflammation were assessed pre-operatively and 1-month post-operatively in a cohort of patients (N = 36; 30 females; ≥70 years old) undergoing major orthopedic surgery under spinal anesthesia. Delirium incidence and severity were evaluated daily during hospitalization. Whole-brain voxel-wise and regions-of-interest analyses were performed to determine the magnitude and spatial extent of changes in [11C]PBR28 uptake following surgery. Results demonstrated that, compared with pre-operative baseline, [11C]PBR28 binding in the brain was globally downregulated at 1 month following major orthopedic surgery, possibly suggesting downregulation of the immune system of the brain. No significant relationship was identified between post-operative delirium and [11C]PBR28 binding, possibly due to a small number (n = 6) of delirium cases in the sample. Additionally, no significant relationships were identified between [11C]PBR28 binding and CSF/plasma biomarkers of inflammation. Collectively, these results contribute to the literature by demonstrating in a sizeable sample the effect of major surgery on neuroimmune activation and preliminary evidence identifying no apparent associations between [11C]PBR28 binding and fluid inflammatory markers or post-operative delirium.

Last updated on 03/08/2024
PubMed