Adipose thermogenesis is repressed in obesity, reducing the homeostatic capacity to compensate for chronic overnutrition. Inflammation inhibits adipose thermogenesis, but little is known about how this occurs. Here we showed that the innate immune transcription factor IRF3 is a strong repressor of thermogenic gene expression and oxygen consumption in adipocytes. IRF3 achieved this by driving expression of the ubiquitin-like modifier ISG15, which became covalently attached to glycolytic enzymes, thus reducing their function and decreasing lactate production. Lactate repletion was able to restore thermogenic gene expression, even when the IRF3/ISG15 axis was activated. Mice lacking ISG15 phenocopied mice lacking IRF3 in adipocytes, as both had elevated energy expenditure and were resistant to diet-induced obesity. These studies provide a deep mechanistic understanding of how the chronic inflammatory milieu of adipose tissue in obesity prevents thermogenic compensation for overnutrition.
Publications
2021
2020
OBJECTIVE: Obesity due to overnutrition causes adipose tissue dysfunction, which is a critical pathological step on the road to type 2 diabetes (T2D) and other metabolic disorders. In this study, we conducted an unbiased investigation into the fundamental molecular mechanisms by which adipocytes transition to an unhealthy state during obesity.
METHODS: We used nuclear tagging and translating ribosome affinity purification (NuTRAP) reporter mice crossed with Adipoq-Cre mice to determine adipocyte-specific 1) transcriptional profiles (RNA-seq), 2) promoter and enhancer activity (H3K27ac ChIP-seq), 3) and PPARγ cistrome (ChIP-seq) profiles in mice fed chow or a high-fat diet (HFD) for 10 weeks. We also assessed the impact of the PPARγ agonist rosiglitazone (Rosi) on gene expression and cellular state of adipocytes from the HFD-fed mice. We integrated these data to determine the transcription factors underlying adipocyte responses to HFD and conducted functional studies using shRNA-mediated loss-of-function approaches in 3T3-L1 adipocytes.
RESULTS: Adipocytes from the HFD-fed mice exhibited reduced expression of adipocyte markers and metabolic genes and enhanced expression of myofibroblast marker genes involved in cytoskeletal organization, accompanied by the formation of actin filament structures within the cell. PPARγ binding was globally reduced in adipocytes after HFD feeding, and Rosi restored the molecular and cellular phenotypes of adipocytes associated with HFD feeding. We identified the TGFβ1 effector protein SMAD to be enriched at HFD-induced promoters and enhancers and associated with myofibroblast signature genes. TGFβ1 treatment of mature 3T3-L1 adipocytes induced gene expression and cellular changes similar to those seen after HFD in vivo, and knockdown of Smad3 blunted the effects of TGFβ1.
CONCLUSIONS: Our data demonstrate that adipocytes fail to maintain cellular identity after HFD feeding, acquiring characteristics of a myofibroblast-like cell type through reduced PPARγ activity and elevated TGFβ-SMAD signaling. This cellular identity crisis may be a fundamental mechanism that drives functional decline of adipose tissues during obesity.
2018
The chemokine CCL2 (also known as MCP-1) is a key regulator of monocyte infiltration into adipose tissue, which plays a central role in the pathophysiology of obesity-associated inflammation and insulin resistance. It remains unclear how CCL2 production is upregulated in obese humans and rodents. Because elevated levels of the free fatty acid (FFA) palmitate and TNF-α have been reported in obesity, we studied whether these agents interact to trigger CCL2 production. Our data show that treatment of THP-1 and primary human monocytic cells with palmitate and TNF-α led to a marked increase in CCL2 production compared with either treatment alone. Mechanistically, we found that cooperative production of CCL2 by palmitate and TNF-α did not require MyD88, but it was attenuated by blocking TLR4 or TRIF. IRF3-deficient cells did not show synergistic CCL2 production in response to palmitate/TNF-α. Moreover, IRF3 activation by polyinosinic-polycytidylic acid augmented TNF-α-induced CCL2 secretion. Interestingly, elevated NF-κB/AP-1 activity resulting from palmitate/TNF-α costimulation was attenuated by TRIF/IRF3 inhibition. Diet-induced C57BL/6 obese mice with high FFAs levels showed a strong correlation between TNF-α and CCL2 in plasma and adipose tissue and, as expected, also showed increased adipose tissue macrophage accumulation compared with lean mice. Similar results were observed in the adipose tissue samples from obese humans. Overall, our findings support a model in which elevated FFAs in obesity create a milieu for TNF-α to trigger CCL2 production via the TLR4/TRIF/IRF3 signaling cascade, representing a potential contribution of FFAs to metabolic inflammation.
Beige and brown adipocytes generate heat in response to reductions in ambient temperature. When warmed, both beige and brown adipocytes exhibit morphological "whitening," but it is unknown whether or to what extent this represents a true shift in cellular identity. Using cell-type-specific profiling in vivo, we uncover a unique paradigm of temperature-dependent epigenomic plasticity of beige, but not brown, adipocytes, with conversion from a brown to a white chromatin state. Despite this profound shift in cellular identity, warm whitened beige adipocytes retain an epigenomic memory of prior cold exposure defined by an array of poised enhancers that prime thermogenic genes for rapid response during a second bout of cold exposure. We further show that a transcriptional cascade involving glucocorticoid receptor and Zfp423 can drive warm-induced whitening of beige adipocytes. These studies identify the epigenomic and transcriptional bases of an extraordinary example of cellular plasticity in response to environmental signals.
Skeletal muscle and brown adipose tissue (BAT) are functionally linked, as exercise increases browning via secretion of myokines. It is unknown whether BAT affects muscle function. Here, we find that loss of the transcription factor IRF4 in BAT (BATI4KO) reduces exercise capacity, mitochondrial function, ribosomal protein synthesis, and mTOR signaling in muscle and causes tubular aggregate formation. Loss of IRF4 induces myogenic gene expression in BAT, including the secreted factor myostatin, a known inhibitor of muscle function. Reducing myostatin via neutralizing antibodies or soluble receptor rescues the exercise capacity of BATI4KO mice. In addition, overexpression of IRF4 in brown adipocytes reduces serum myostatin and increases exercise capacity in muscle. Finally, mice housed at thermoneutrality have reduced IRF4 in BAT, lower exercise capacity, and elevated serum myostatin; these abnormalities are corrected by excising BAT. Collectively, our data point to an unsuspected level of BAT-muscle crosstalk driven by IRF4 and myostatin.
2017
OBJECTIVE: The critical role of adipose tissue in energy and nutrient homeostasis is influenced by many external factors, including overnutrition, inflammation, and exogenous hormones. Prior studies have suggested that glucocorticoids (GCs) in particular are major drivers of physiological and pathophysiological changes in adipocytes. In order to determine whether these effects directly require the glucocorticoid receptor (GR) within adipocytes, we generated adipocyte-specific GR knockout (AGRKO) mice.
METHODS: AGRKO and control mice were fed chow or high fat diet (HFD) for 14 weeks. Alternatively, AGRKO and control mice were injected with dexamethasone for two months. Glucose tolerance, insulin sensitivity, adiposity, lipolysis, thermogenesis, and insulin signaling were assessed.
RESULTS: We find that obesity, insulin resistance, and dysglycemia associated with high fat feeding do not require an intact GR in the adipocyte. However, exogenous dexamethasone (Dex) promotes metabolic dysfunction in mice, and this effect is reduced in mice lacking GR in adipocytes. The ability of Dex to promote "whitening" of brown fat is also reduced in these animals. We also show that GR is required for β-adrenergic and cold stimulation-mediated lipolysis via expression of the key lipolytic enzyme ATGL.
CONCLUSIONS: Our data suggest that the GR plays a role in normal adipose physiology via effects on lipolysis and mediates at least some of the adverse effects of exogenous steroids on metabolic function. The data also indicate that intra-adipocyte GR plays less of a role than previously believed in the local and systemic pathology associated with overnutrition.
Epigenomic mechanisms direct distinct gene expression programs for different cell types. Various in vivo tissues have been subjected to epigenomic analysis; however, these studies have been limited by cellular heterogeneity, resulting in composite gene expression and epigenomic profiles. Here, we introduce "NuTRAP," a transgenic mouse that allows simultaneous isolation of cell-type-specific translating mRNA and chromatin from complex tissues. Using NuTRAP, we successfully characterize gene expression and epigenomic states of various adipocyte populations in vivo, revealing significant differences compared to either whole adipose tissue or in vitro adipocyte cell lines. We find that chromatin immunoprecipitation sequencing (ChIP-seq) using NuTRAP is highly efficient, scalable, and robust with even limited cell input. We further demonstrate the general utility of NuTRAP by analyzing hepatocyte-specific epigenomic states. The NuTRAP mouse is a resource that provides a powerful system for cell-type-specific gene expression and epigenomic profiling.
2016
The chronic inflammatory state that accompanies obesity is a major contributor to insulin resistance and other dysfunctional adaptations in adipose tissue. Cellular and secreted factors promote the inflammatory milieu of obesity, but the transcriptional pathways that drive these processes are not well described. Although the canonical inflammatory transcription factor NF-κB is considered to be the major driver of adipocyte inflammation, members of the interferon regulatory factor (IRF) family may also play a role in this process. Here, we determined that IRF3 expression is upregulated in the adipocytes of obese mice and humans. Signaling through TLR3 and TLR4, which lie upstream of IRF3, induced insulin resistance in murine adipocytes, while IRF3 knockdown prevented insulin resistance. Furthermore, improved insulin sensitivity in IRF3-deficient mice was associated with reductions in intra-adipose and systemic inflammation in the high fat-fed state, enhanced browning of subcutaneous fat, and increased adipose expression of GLUT4. Taken together, the data indicate that IRF3 is a major transcriptional regulator of adipose inflammation and is involved in maintaining systemic glucose and energy homeostasis.
Insulin resistance is a sine qua non of type 2 diabetes and is associated with many other clinical conditions. Decades of research into mechanisms underlying insulin resistance have mostly focused on problems in insulin signal transduction and other mitochondrial and cytosolic pathways. By contrast, relatively little attention has been focused on transcriptional and epigenetic contributors to insulin resistance, despite strong evidence that such nuclear mechanisms play a major role in the etiopathogenesis of this condition. In this review, we summarize the evidence for nuclear mechanisms of insulin resistance, focusing on three transcription factors with a major impact on insulin action in liver, muscle, and fat.