- Home
- 2017
2017
Ideally, biomaterials designed to play specific physical and physiological roles in vivo should comprise components and microarchitectures analogous to those of the native tissues they intend to replace. For that, implantable biomaterials need to be carefully designed to have the correct structural and compositional properties, which consequently impart their bio-function. In this study, we showed that the control of such properties can be defined from the bottom-up, using smart surface templates to modulate the structure, composition, and bio-mechanics of human transplantable tissues. Using multi-functional peptide amphiphile-coated surfaces with different anisotropies, we were able to control the phenotype of corneal stromal cells and instruct them to fabricate self-lifting tissues that closely emulated the native stromal lamellae of the human cornea. The type and arrangement of the extracellular matrix comprising these corneal stromal Self-Lifting Analogous Tissue Equivalents (SLATEs) were then evaluated in detail, and was shown to correlate with tissue function. Specifically, SLATEs comprising aligned collagen fibrils were shown to be significantly thicker, denser, and more resistant to proteolytic degradation compared to SLATEs formed with randomly-oriented constituents. In addition, SLATEs were highly transparent while providing increased absorption to near-UV radiation. Importantly, corneal stromal SLATEs were capable of constituting tissues with a higher-order complexity, either by creating thicker tissues through stacking or by serving as substrate to support a fully-differentiated, stratified corneal epithelium. SLATEs were also deemed safe as implants in a rabbit corneal model, being capable of integrating with the surrounding host tissue without provoking inflammation, neo-vascularization, or any other signs of rejection after a 9-months follow-up. This work thus paves the way for the de novo bio-fabrication of easy-retrievable, scaffold-free human tissues with controlled structural, compositional, and functional properties to replace corneal, as well as other, tissues.
This article presents a surgical technique using a pericardial patch for the permanent repair of severe scleral thinning encountered during strabismus surgery. In the present case scleral thinning resulted from buckle removal. Familiarity with this technique may prove important for the strabismus surgeon treating patients with a history of surface ocular hardware or disease-induced scleral thinning. This video article may be viewed atjaapos.org.
OBJECTIVE: This case series is the first to describe divergence palsy as an adverse effect of antiepileptic drug use. Diplopia is a common adverse effect of antiepileptic drugs, but no explanatory motility deficit has ever been reported. METHODS: We present 2 patients, 1 on oxcarbazepine and 1 on divalproex, each with a normal examination result between spells and divergency palsy when symptomatic. RESULTS: Discontinuation of the antiepileptic medication led to resolution of the episodes in both cases. Rechallenge with the offending agent after washout in one patient resulted in recurrence of diplopia and divergence palsy, both resolving after subsequent withdrawal of the antiepileptic. CONCLUSIONS: Antiepileptic drugs may cause divergence palsy.
Fenofibrate, a specific agonist of peroxisome proliferator-activated receptor alpha (PPARα), displays robust therapeutic effects on diabetic retinopathy (DR) in type 2 diabetic patients. Our recent studies have shown that PPARα is down-regulated in the diabetic retina, which contributes to the pathogenesis of DR. However, the mechanism for diabetes-induced down-regulation of PPARα remains unknown. We investigated the role of microRNA-21 (miR-21) in regulating PPARα in DR. MiR-21 was over-expressed, while PPARα levels were decreased in the retina of db/db mice, a type 2 diabetic model. Such alterations were also observed in palmitate-treated retinal endothelial cells. MiR-21 targeted PPARα by inhibiting its mRNA translation. Knockout of miR-21 prevented the decrease of PPARα, alleviated microvascular damage, ameliorated inflammation and reduced cell apoptosis in the retina of db/db mice. Intravitreal injection of miR-21 inhibitor attenuated PPARα down-regulation and ameliorated retinal inflammation in db/db mice. Further, retinal miR-21 levels were increased, while PPARα levels were decreased in oxygen-induced retinopathy (OIR). Knockout of miR-21 prevented PPARα down-regulation and ameliorated retinal neovascularization and inflammation in OIR retinas. In conclusion, diabetes-induced over-expression of miR-21 in the retina is responsible, at least in part, for PPARα down-regulation in DR. Targeting miR-21 may represent a novel therapeutic strategy for DR.
Because there are currently no biological treatments for hearing loss, we sought to advance gene therapy approaches to treat genetic deafness. We focused on Usher syndrome, a devastating genetic disorder that causes blindness, balance disorders and profound deafness, and studied a knock-in mouse model, Ush1c c.216G>A, for Usher syndrome type IC (USH1C). As restoration of complex auditory and balance function is likely to require gene delivery systems that target auditory and vestibular sensory cells with high efficiency, we delivered wild-type Ush1c into the inner ear of Ush1c c.216G>A mice using a synthetic adeno-associated viral vector, Anc80L65, shown to transduce 80-90% of sensory hair cells. We demonstrate recovery of gene and protein expression, restoration of sensory cell function, rescue of complex auditory function and recovery of hearing and balance behavior to near wild-type levels. The data represent unprecedented recovery of inner ear function and suggest that biological therapies to treat deafness may be suitable for translation to humans with genetic inner ear disorders.
PURPOSE: To review antibiotic resistance associated with S. aureus endophthalmitis and the virulence of S. aureus. METHODS: Review of the current and prospective approaches for treating S. aureus endophthalmitis. RESULTS: Bacterial endophthalmitis remains to be a major threat for vision. S. aureus endophthalmitis specifically, carries a poor visual prognosis making early diagnosis and treatment crucial. Methicillin resistant Staphylococcus aureus (MRSA) endophthalmitis represents a significant number of S. aureus endophthalmitis cases. MRSA with reduced susceptibility to glycopeptide antibiotics such as vancomycin (vancomycin intermediate S. aureus, VISA) have also emerged in the ocular infections, and there has been a rise in S. aureus resistance to new and old generation fluoroquinolones that are commonly used for prophylaxis after intravitreal injections and intraocular surgeries. CONCLUSIONS: With the rise in the number of penetrating procedures in the ophthalmology practice and the parallel rise in antibiotic resistance, prophylaxis and awareness of the antimicrobial resistance profiles remain crucial and the identification of novel antimicrobials is essential.
PURPOSE: Obstructive meibomian gland dysfunction is a leading cause of ocular morbidity and its treatment remains a challenge. Meibomian gland probing was initially described in 2010. Here, the authors describe a modified technique, dynamic intraductal meibomian probing, which offers several advantages over the traditional approach including increased magnification, greater eyelid stabilization, enhanced anesthesia, and easier identification of gland orifices through the expression of meibum. METHODS: The authors conducted a retrospective chart review of 70 eyelids with treatment-resistant obstructive meibomian gland dysfunction undergoing dynamic intraductal meibomian probing between January 2013 and April 2015. RESULTS: Immediately after the procedure, 91.4% of cases experienced symptomatic improvement, and no complications were noted. CONCLUSIONS: Dynamic intraductal meibomian probing is an effective and safe treatment for obstructive meibomian gland dysfunction that is resistant to traditional therapies.
OBJECTIVE: To compare clinical outcomes of cataract surgery in eyes with and without pseudoexfoliation (PXF). DESIGN: Retrospective deidentified data analysis. PARTICIPANTS: A total of 123 PXF and 4776 non-PXF eyes of patients who underwent cataract surgery. METHODS: We compared data on visual acuity, Visual Function Questionnaire (VFQ)-based quality of life, and complications in PXF and non-PXF eyes from the Veterans Affairs (VA) Ophthalmic Surgery Outcomes Data Project across 5 VA medical centres. RESULTS: Pupillary expansion devices were used in 31 (25.2%) PXF cases and 398 (8.4%) non-PXF cases (p < 0.0001). Capsular tension rings were used in 6 (4.9%) PXF cases and 55 (1.2%) non-PXF cases (p < 0.004). The following complications occurred more frequently in PXF cases: zonular dehiscence without vitrectomy (4 [3.3%] PXF cases vs 40 [0.8%] non-PXF cases p = 0.02), persistent inflammation (28 [24.1%] vs 668 [14.5%]; p = 0.007), and persistent intraocular pressure elevation (5 [4.3%] vs 68 [1.5%]; p = 0.03). Best corrected visual acuity (BCVA) improved in both groups after 1 month, but 87 (83.7%) PXF cases achieved postoperative BCVA better than or equal to 20/40 compared to 3991 (93.8%) non-PXF cases (p = 0.0003). There was no significant difference in the postoperative composite VFQ scores between PXF (82.1 ± 16.9) and non-PXF cases (84.2 ± 16.8, p = 0.09). CONCLUSIONS: Several complications occurred more frequently in the PXF group compared to the non-PXF group, and fewer PXF cases achieved BCVA better than or equal to 20/40. Despite this, both groups experienced similar improvement in vision-related quality of life after cataract surgery.
Enterococci are ancient commensal bacteria that recently emerged as leading causes of antibiotic-resistant, hospital-acquired infection. Vancomycin-resistant enterococci (VRE) epitomize why drug-resistant enterococcal infections are a problem: VRE readily colonize the antibiotic-perturbed gastrointestinal (GI) tract where they amplify to large numbers, and from there, they infect other body sites, including the bloodstream, urinary tract, and surgical wounds. VRE are resistant to many antimicrobials and host defenses, which facilitates establishment at the site of infection and confounds therapeutic clearance. Having evolved to colonize the GI tract, VRE are comparatively ill adapted to the human bloodstream. A recent study by Honsa and colleagues (E. S. Honsa et al., mBio 8:e02124-16, 2017, https://doi.org/10.1128/mBio.02124-16) found that a strain of vancomycin-resistant Enterococcus faecium evolved antibiotic tolerance within the bloodstream of an immunocompromised host by activating the stringent response through mutation of relA Precisely how VRE colonize and infect and the selective pressures that led to the outgrowth of relA mutants are the subjects of ongoing research.
Purpose: Optic nerve head astrocytes, a subtype of white-matter astrocytes, become reactive early in the course of glaucoma. It was shown recently that in the DBA/2J mouse model of inherited glaucoma optic nerve astrocytes extend new longitudinal processes into the axon bundles before ganglion cell loss becomes apparent. The present study aims at testing whether this behavior of astrocytes is typical of early glaucomatous damage. Methods: Mice expressing green fluorescent protein in individual astrocytes were used to evaluate the early response of astrocytes in the glial lamina of the optic nerve head after increasing the IOP using the microbead occlusion method. Tissue sections from the glial lamina were imaged consecutively by confocal and electron microscopy. Results: Confocal and electron microscope images show that astrocytes close to the myelination transition zone in the hypertensive nerve heads extend new processes that follow the longitudinal axis of the optic nerve and invade axon bundles in the nerve head. Ultrastructurally, the longitudinal processes were largely devoid of subcellular organelles except for degenerating mitochondria. Conclusions: The longitudinal processes are a common feature of glaucomatous optic nerve astrocytes, whereas they are not observed after traumatic nerve injury. Thus, astrocytes appear to fine-tune their responses to the nature and/or timing of the injury to the neurons that they surround.
Purpose: Vascular endothelial growth factor receptor 2 (VEGFR2) plays a key role in VEGF-induced angiogenesis. The goal of this project was to test the hypothesis that editing genomic VEGFR2 loci using the technology of clustered regularly interspaced palindromic repeats (CRISPR)-associated DNA endonuclease (Cas)9 in Streptococcus pyogenes (SpCas9) was able to block VEGF-induced activation of Akt and tube formation. Methods: Four 20 nucleotides for synthesizing single-guide RNAs based on human genomic VEGFR2 exon 3 loci were selected and cloned into a lentiCRISPR v2 vector, respectively. The DNA fragments from the genomic VEGFR2 exon 3 of transduced primary human retinal microvascular endothelial cells (HRECs) were analyzed by Sanger DNA sequencing, surveyor nuclease assay, and next-generation sequencing (NGS). In the transduced cells, expression of VEGFR2 and VEGF-stimulated signaling events (e.g., Akt phosphorylation) were determined by Western blot analyses; VEGF-induced cellular responses (proliferation, migration, and tube formation) were examined. Results: In the VEGFR2-sgRNA/SpCas9-transduced HRECs, Sanger DNA sequencing indicated that there were mutations, and NGS demonstrated that there were 83.57% insertion and deletions in the genomic VEGFR2 locus; expression of VEGFR2 was depleted in the VEGFR2-sgRNA/SpCas9-transduced HRECs. In addition, there were lower levels of Akt phosphorylation in HRECs with VEGFR2-sgRNA/SpCas9 than those with LacZ-sgRNA/SpCas9, and there was less VEGF-stimulated Akt activation, proliferation, migration, or tube formation in the VEGFR2-depleted HRECs than those treated with aflibercept or ranibizumab. Conclusions: The CRISPR-SpCas9 technology is a potential novel approach to prevention of pathologic angiogenesis.
