The use of viral vectors for inner ear gene therapy is receiving increased attention for treatment of genetic hearing disorders. Most animal studies to date have injected viral suspensions into neonatal ears, via the round window membrane. Achieving transduction of hair cells, or sensory neurons, throughout the cochlea has proven difficult, and no studies have been able to efficiently transduce sensory cells in adult ears while maintaining normal cochlear function. Here, we show, for the first time, successful transduction of all inner hair cells and the majority of outer hair cells in an adult cochlea via virus injection into the posterior semicircular canal. We used a "designer" AAV, AAV2/Anc80L65, in which the main capsid proteins approximate the ancestral sequence state of AAV1, 2, 8, and 9. Our injections also transduced ~10% of spiral ganglion cells and a much larger fraction of their satellite cells. In the vestibular sensory epithelia, the virus transduced large numbers of hair cells and virtually all the supporting cells, along with close to half of the vestibular ganglion cells. We conclude that this viral vector and this delivery route hold great promise for gene therapy applications in both cochlear and vestibular sense organs.
- Home
- 2017
2017
Antigen-presenting cells (APCs) play an important role in transplant rejection and tolerance. In high-risk corneal transplantation, where the graft bed is inflamed and vascularized, immature APCs in the donor corneal stroma quickly mature and migrate to lymphoid tissues to sensitize host T cells. In this study, using a mouse model of corneal transplantation, we investigated whether enrichment of tolerogenic APCs (tolAPCs) in donor corneas can enhance graft survival in corneal allograft recipients with inflamed graft beds. Treatment of donor corneas with interleukin-10 (IL-10) and transforming growth factor-β1 (TGFβ1) altered the phenotype and function of tissue-residing APCs. Transplantation of these tolAPC-enriched corneas decreased frequencies of interferon gamma (IFNγ)(+) effector T cells (Teffs), as well as allosensitization in the hosts, diminished graft infiltration of CD45(+) and CD4(+) cells, and significantly improved corneal allograft survival compared to saline-injected controls. These data provide a novel approach for tolAPC-based immunotherapy in transplantation by direct cytokine conditioning of the donor tissue.
Transplantation of cultured oral mucosal epithelial cells (OMECs) is a promising treatment strategy for limbal stem cell deficiency. In order to improve the culture method, we investigated the effects of four culture media and tissue harvesting sites on explant attachment, growth, and phenotype of OMECs cultured from Sprague-Dawley rats. Neither choice of media or harvesting site impacted the ability of the explants to attach to the culture well. Dulbecco's modified Eagle's medium/Ham's F12 (DMEM) and Roswell Park Memorial Institute 1640 medium (RPMI) supported the largest cellular outgrowth. Fold outgrowth was superior from LL explants compared to explants from the buccal mucosa (BM), HP, and transition zone of the lower lip (TZ) after six-day culture. Putative stem cell markers were detected in cultures grown in DMEM and RPMI. In DMEM, cells from TZ showed higher colony-forming efficiency than LL, BM, and HP. In contrast to RPMI, DMEM both expressed the putative stem cell marker Bmi-1 and yielded cell colonies. Our data suggest that OMECs from LL and TZ cultured in DMEM give rise to undifferentiated cells with high growth capacity, and hence are the most promising for treatment of limbal stem cell deficiency.
Motor, sensory, and integrative activities of the brain are coordinated by a series of midline-bridging neuronal commissures whose development is tightly regulated. Here we report a new human syndrome in which these commissures are widely disrupted, thus causing clinical manifestations of horizontal gaze palsy, scoliosis, and intellectual disability. Affected individuals were found to possess biallelic loss-of-function mutations in the gene encoding the axon-guidance receptor 'deleted in colorectal carcinoma' (DCC), which has been implicated in congenital mirror movements when it is mutated in the heterozygous state but whose biallelic loss-of-function human phenotype has not been reported. Structural MRI and diffusion tractography demonstrated broad disorganization of white-matter tracts throughout the human central nervous system (CNS), including loss of all commissural tracts at multiple levels of the neuraxis. Combined with data from animal models, these findings show that DCC is a master regulator of midline crossing and development of white-matter projections throughout the human CNS.
Verteporfin (VP) was first used in Photodynamic therapy, where a non-thermal laser light (689 nm) in the presence of oxygen activates the drug to produce highly reactive oxygen radicals, resulting in local cell and tissue damage. However, it has also been shown that Verteporfin can have non-photoactivated effects such as interference with the YAP-TEAD complex of the HIPPO pathway, resulting in growth inhibition of several neoplasias. More recently, it was proposed that, another non-light mediated effect of VP is the formation of cross-linked oligomers and high molecular weight protein complexes (HMWC) that are hypothesized to interfere with autophagy and cell growth. Here, in a series of experiments, using human uveal melanoma cells (MEL 270), human embryonic kidney cells (HEK) and breast cancer cells (MCF7) we showed that Verteporfin-induced HMWC require the presence of light. Furthermore, we showed that the mechanism of this cross-linking, which involves both singlet oxygen and radical generation, can occur very efficiently even after lysis of the cells, if the lysate is not protected from ambient light. This work offers a better understanding regarding VP's mechanisms of action and suggests caution when one studies the non-light mediated actions of this drug.
Purpose: To spatially and temporally define ocular motor nerve development in the presence and absence of extraocular muscles (EOMs). Methods: Myf5cre mice, which in the homozygous state lack EOMs, were crossed to an IslMN:GFP reporter line to fluorescently label motor neuron cell bodies and axons. Embryonic day (E) 11.5 to E15.5 wild-type and Myf5cre/cre:IslMN:GFP whole mount embryos and dissected orbits were imaged by confocal microscopy to visualize the developing oculomotor, trochlear, and abducens nerves in the presence and absence of EOMs. E11.5 and E18.5 brainstems were serially sectioned and stained for Islet1 to determine the fate of ocular motor neurons. Results: At E11.5, all three ocular motor nerves in mutant embryos approached the orbit with a trajectory similar to that of wild-type. Subsequently, while wild-type nerves send terminal branches that contact target EOMs in a stereotypical pattern, the Myf5cre/cre ocular motor nerves failed to form terminal branches, regressed, and by E18.5 two-thirds of their corresponding motor neurons died. Comparisons between mutant and wild-type embryos revealed novel aspects of trochlear and oculomotor nerve development. Conclusions: We delineated mouse ocular motor nerve spatial and temporal development in unprecedented detail. Moreover, we found that EOMs are not necessary for initial outgrowth and guidance of ocular motor axons from the brainstem to the orbit but are required for their terminal branching and survival. These data suggest that intermediate targets in the mesenchyme provide cues necessary for appropriate targeting of ocular motor axons to the orbit, while EOM cues are responsible for terminal branching and motor neuron survival.
Regulation of biological processes occurs through complex, synergistic mechanisms. In this study, we discovered the synergistic orchestration of multiple mechanisms regulating the normal and diseased state (age related macular degeneration, AMD) in the retina. We uncovered gene networks with overlapping feedback loops that are modulated by nuclear hormone receptors (NHR), miRNAs, and epigenetic factors. We utilized a comprehensive filtering and pathway analysis strategy comparing miRNA and microarray data between three mouse models and human donor eyes (normal and AMD). The mouse models lack key NHRS (Nr2e3, RORA) or epigenetic (Ezh2) factors. Fifty-four total miRNAs were differentially expressed, potentially targeting over 150 genes in 18 major representative networks including angiogenesis, metabolism, and immunity. We identified sixty-eight genes and 5 miRNAS directly regulated by NR2E3 and/or RORA. After a comprehensive analysis, we discovered multimodal regulation by miRNA, NHRs, and epigenetic factors of three miRNAs (miR-466, miR1187, and miR-710) and two genes (Ell2 and Entpd1) that are also associated with AMD. These studies provide insight into the complex, dynamic modulation of gene networks as well as their impact on human disease, and provide novel data for the development of innovative and more effective therapeutics.
Synovial sarcoma is a soft-tissue sarcoma of the extremities developing in young adults that has rarely been reported in the orbit. Synovial sarcoma is associated with a unique translocation, resulting in an SYT-SSX fusion gene. We analyze 7 published periocular cases, together with the current one, to gain a better appreciation of the features of the tumor in this location and to compare the findings with those derived from nonophthalmic studies. An inferior orbital mass developed in a 31-year-old woman after experiencing periorbital and hemifacial pain for more than a decade. Radiographically, the mass was circumscribed and displayed coarse internal calcifications. A large but subtotal excision with histopathologic examination disclosed a primitive tumor composed of spindled and ovoid cells. Immunohistochemistry demonstrated positivity for nuclear transducin-like enhancer of split 1 and membranous CD99, typical for synovial sarcoma. Fluorescence in situ hybridization identified a (X,18) translocation in the tumor cells. The patient underwent postoperative adjuvant proton beam radiotherapy with a good response that has been maintained during 1 year of follow-up. Orbital soft-tissue tumors of all types are increasingly identified by their distinctive genetic signatures that offer more specificity than standard immunohistochemical tests.
PURPOSE: The purpose of this study was to develop an algorithm to automatically standardize the brightness, contrast, and color balance of digital color fundus photographs used to grade AMD and to validate this algorithm by determining the effects of the standardization on image quality and disease grading. METHODS: Seven-field color photographs of patients (>50 years) with any stage of AMD and a control group were acquired at two study sites, with either the Topcon TRC-50DX or Zeiss FF-450 Plus cameras. Field 2 photographs were analyzed. Pixel brightness values in the red, green, and blue (RGB) color channels were adjusted in custom-built software to make the mean brightness and contrast of the images equal to optimal values determined by the Age-Related Eye Disease Study (AREDS) 2 group. RESULTS: Color photographs of 370 eyes were analyzed. We found a wide range of brightness and contrast values in the images at baseline, even for those taken with the same camera. After processing, image brightness variability (brightest image-dimmest image in a color channel) was reduced 69-fold, 62-fold, and 96-fold for the RGB channels. Contrast variability was reduced 6-fold, 8-fold, and 13-fold, respectively, after adjustment. Of the 23% images considered nongradable before adjustment, only 5.7% remained nongradable. CONCLUSIONS: This automated software enables rapid and accurate standardization of color photographs for AMD grading. TRANSLATIONAL RELEVANCE: This work offers the potential to be the future of assessing and grading AMD from photos for clinical research and teleimaging.
PURPOSE: To review the available evidence on the ocular safety and efficacy of anti-vascular endothelial growth factor (VEGF) agents for the treatment of retinopathy of prematurity (ROP) compared with laser photocoagulation therapy. METHODS: A literature search of the PubMed and Cochrane Library databases was conducted last on September 6, 2016, with no date restrictions and limited to articles published in English. This search yielded 311 citations, of which 37 were deemed clinically relevant for full-text review. Thirteen of these were selected for inclusion in this assessment. The panel methodologist assigned ratings to the selected articles according to the level of evidence. RESULTS: Of the 13 citations, 6 articles on 5 randomized clinical trials provided level II evidence supporting the use of anti-VEGF agents, either as monotherapy or in combination with laser therapy. The primary outcome for these articles included recurrence of ROP and the need for retreatment (3 articles), retinal structure (2 articles), and refractive outcome (1 article). Seven articles were comparative case series that provided level III evidence. The primary outcomes included the effects of anti-VEGF treatment on development of peripheral retinal vessels (1 article), refractive outcomes (1 article), or both structural and refractive or visual outcomes (5 articles). CONCLUSIONS: Current level II and III evidence indicates that intravitreal anti-VEGF therapy is as effective as laser photocoagulation for achieving regression of acute ROP. Although there are distinct ocular advantages to anti-VEGF pharmacotherapy for some cases (such as eyes with zone I disease or aggressive posterior ROP), the disadvantages are that the ROP recurrence rate is higher, and vigilant and extended follow-up is needed because retinal vascularization is usually incomplete. After intravitreal injection, bevacizumab can be detected in serum within 1 day, and serum VEGF levels are suppressed for at least 8 to 12 weeks. The effects of lowering systemic VEGF levels on the developing organ systems of premature infants are unknown, and there are limited long-term data on potential systemic and neurodevelopmental effects after anti-VEGF use for ROP treatment. Anti-VEGF agents should be used judiciously and with awareness of the known and unknown or potential side effects.
The Nurses' Health Study (NHS), Nurses' Health Study II (NHSII), Health Professionals Follow Up Study (HPFS) and the Physicians Health Study (PHS) have collected detailed longitudinal data on multiple exposures and traits for approximately 310,000 study participants over the last 35 years. Over 160,000 study participants across the cohorts have donated a DNA sample and to date, 20,691 subjects have been genotyped as part of genome-wide association studies (GWAS) of twelve primary outcomes. However, these studies utilized six different GWAS arrays making it difficult to conduct analyses of secondary phenotypes or share controls across studies. To allow for secondary analyses of these data, we have created three new datasets merged by platform family and performed imputation using a common reference panel, the 1,000 Genomes Phase I release. Here, we describe the methodology behind the data merging and imputation and present imputation quality statistics and association results from two GWAS of secondary phenotypes (body mass index (BMI) and venous thromboembolism (VTE)). We observed the strongest BMI association for the FTO SNP rs55872725 (β = 0.45, p = 3.48x10-22), and using a significance level of p = 0.05, we replicated 19 out of 32 known BMI SNPs. For VTE, we observed the strongest association for the rs2040445 SNP (OR = 2.17, 95% CI: 1.79-2.63, p = 2.70x10-15), located downstream of F5 and also observed significant associations for the known ABO and F11 regions. This pooled resource can be used to maximize power in GWAS of phenotypes collected across the cohorts and for studying gene-environment interactions as well as rare phenotypes and genotypes.
Importance: Pyogenic granulomas, acquired vascular lesions, form on the ocular or palpebral surface related to inflammation from chalazia, trauma, or surgery. They can be unsightly, spontaneously bleed, and cause irritation to patients. Observations: A case series is presented of 4 consecutive children with acquired ocular surface pyogenic granulomas treated at Boston Children's Hospital from 2014 to 2016 with only topical timolol, 0.5%, twice daily for a minimum of 21 days. In all cases, complete resolution occurred within the treatment period with no recurrence for at least 3 months. There were no adverse effects from the timolol during follow-up. Conclusions and Relevance: This case series of 4 children, while limited to no greater than 12 weeks of follow-up and without control children, suggests that ocular surface pyogenic granulomas respond to topical timolol treatment, which has a lower adverse-effect profile than conventional topical steroid treatments or other medical or surgical therapies. If confirmed in larger studies with longer follow-up and controls, this may be the desired treatment modality.
Purpose: Using quantitative fundus autofluorescence (qAF), we analyzed short-wavelength autofluorescent (SW-AF) rings in RP. Methods: Short-wavelength autofluorescent images (486 nm excitation) of 40 patients with RP (69 eyes) were acquired with a confocal scanning laser ophthalmoscope equipped with an internal fluorescent reference. Mean qAF was measured in eight preset segments (qAF8) and in region of interest (ROI)-qAF (200-700 μm) within and external to the borders of the rings at superior, temporal, and inferior sites relative to the ring. For both groups, qAF in patients with RP was compared to age-similar and race/ethnicity-matched healthy eyes at equivalent retinal locations. Results: In 71% of eyes of RP patients, qAF8 acquired internal to the inner border of the ring, was within the 95% confidence interval (CI) for healthy eyes, while in the remaining RP eyes qAF8 was either higher or lower than the CI. Measured external to the ring, qAF8 values were within the CI in 47% of RP eyes with the other eyes being higher or lower. In 28% of sites measured by ROI-qAF within the SW-AF ring, values were above the 95% CI of healthy controls. Region of interest-qAF measured just external to the ring was within the CI of healthy eyes in 74% of locations. The average local elevation in qAF within the ring was approximately 15%. In SD-OCT scans, photoreceptor-attributable reflectivity bands were thinned within and external to the ring. Conclusions: Increased fluorophore production may be a factor in the formation of the SW-AF rings in RP.
