Publications by Author: Frank J Slack

L

Lee, Soo Mi, Michael T Winters, Ivan Martinez, and Frank J Slack. (2023) 2023. “Small Regulatory RNAs: From Bench to Bedside - a Keystone Symposia Meeting Report.”. RNA Biology 20 (1): 136-39. https://doi.org/10.1080/15476286.2023.2196046.

The Keystone Symposium 'Small Regulatory RNAs: From Bench to Bedside' was held in Santa Fe, New Mexico from May 1-4, 2022. The symposium was organized by Frank J. Slack, Jörg Vogel, Ivan Martinez and Karyn Schmidt, and brought together scientists working in noncoding RNA biology, therapeutics, and technologies to address mechanistic questions about small regulatory RNAs and facilitate translation of these findings into clinical applications. The conference addressed four specific aims: Aim 1. Focus on the exciting biology of small regulatory RNAs, highlighting the best current research into the role that small RNAs play in fundamental biological processes; Aim 2. Focus on the latest efforts to harness the power of these RNAs as agents in the fight against disease and provide the basic understanding that will drive the invention of powerful clinical tools; Aim 3. Attract leaders from both academia and industry working in small RNAs to one place for critical discussions that will advance the field and accelerate the bench to bedside use of this technology; Aim 4. Provide a stimulating environment where students, postdoctoral researchers and junior investigators, along with scientists from Biotechnology and Pharmaceutical companies specializing in small regulatory RNAs, can present and discuss their research with the best minds in the field.

Li, Chun, Bohyung Yoon, Giovanni Stefani, and Frank J Slack. (2023) 2023. “Lipid Kinase PIP5K1A Regulates Let-7 MicroRNA Biogenesis through Interacting With Nuclear Export Protein XPO5.”. Nucleic Acids Research 51 (18): 9849-62. https://doi.org/10.1093/nar/gkad709.

MicroRNAs (miRNAs) are small non-coding RNAs first discovered in Caenorhabditis elegans. The let-7 miRNA is highly conserved in sequence, biogenesis and function from C. elegans to humans. During miRNA biogenesis, XPO5-mediated nuclear export of pre-miRNAs is a rate-limiting step and, therefore, might be critical for the quantitative control of miRNA levels, yet little is known about how this is regulated. Here we show a novel role for lipid kinase PPK-1/PIP5K1A (phosphatidylinositol-4-phosphate 5-kinase) in regulating miRNA levels. We found that C. elegans PPK-1 functions in the lin-28/let-7 heterochronic pathway, which regulates the strict developmental timing of seam cells. In C. elegans and human cells, PPK-1/PIP5K1A regulates let-7 miRNA levels. We investigated the mechanism further in human cells and show that PIP5K1A interacts with nuclear export protein XPO5 in the nucleus to regulate mature miRNA levels by blocking the binding of XPO5 to pre-let-7 miRNA. Furthermore, we demonstrate that this role for PIP5K1A is kinase-independent. Our study uncovers the novel finding of a direct connection between PIP5K1A and miRNA biogenesis. Given that miRNAs are implicated in multiple diseases, including cancer, this new finding might lead to a novel therapeutic opportunity.

Lee, Jonathan D, Bridget L Menasche, Maria Mavrikaki, Madison M Uyemura, Su Min Hong, Nina Kozlova, Jin Wei, et al. (2023) 2023. “Differences in Syncytia Formation by SARS-CoV-2 Variants Modify Host Chromatin Accessibility and Cellular Senescence via TP53.”. BioRxiv : The Preprint Server for Biology. https://doi.org/10.1101/2023.08.31.555625.

COVID-19 remains a significant public health threat due to the ability of SARS-CoV-2 variants to evade the immune system and cause breakthrough infections. Although pathogenic coronaviruses such as SARS-CoV-2 and MERS-CoV lead to severe respiratory infections, how these viruses affect the chromatin proteomic composition upon infection remains largely uncharacterized. Here we used our recently developed integrative DNA And Protein Tagging (iDAPT) methodology to identify changes in host chromatin accessibility states and chromatin proteomic composition upon infection with pathogenic coronaviruses. SARS-CoV-2 infection induces TP53 stabilization on chromatin, which contributes to its host cytopathic effect. We mapped this TP53 stabilization to the SARS-CoV-2 spike and its propensity to form syncytia, a consequence of cell-cell fusion. Differences in SARS-CoV-2 spike variant-induced syncytia formation modify chromatin accessibility, cellular senescence, and inflammatory cytokine release via TP53. Our findings suggest that differences in syncytia formation alter senescence-associated inflammation, which varies among SARS-CoV-2 variants.

Lee, Jonathan D, Bridget L Menasche, Maria Mavrikaki, Madison M Uyemura, Su Min Hong, Nina Kozlova, Jin Wei, et al. (2023) 2023. “Differences in Syncytia Formation by SARS-CoV-2 Variants Modify Host Chromatin Accessibility and Cellular Senescence via TP53.”. Cell Reports 42 (12): 113478. https://doi.org/10.1016/j.celrep.2023.113478.

Coronavirus disease 2019 (COVID-19) remains a significant public health threat due to the ability of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants to evade the immune system and cause breakthrough infections. Although pathogenic coronaviruses such as SARS-CoV-2 and Middle East respiratory syndrome (MERS)-CoV lead to severe respiratory infections, how these viruses affect the chromatin proteomic composition upon infection remains largely uncharacterized. Here, we use our recently developed integrative DNA And Protein Tagging methodology to identify changes in host chromatin accessibility states and chromatin proteomic composition upon infection with pathogenic coronaviruses. SARS-CoV-2 infection induces TP53 stabilization on chromatin, which contributes to its host cytopathic effect. We mapped this TP53 stabilization to the SARS-CoV-2 spike and its propensity to form syncytia, a consequence of cell-cell fusion. Differences in SARS-CoV-2 spike variant-induced syncytia formation modify chromatin accessibility, cellular senescence, and inflammatory cytokine release via TP53. Our findings suggest that differences in syncytia formation alter senescence-associated inflammation, which varies among SARS-CoV-2 variants.

Li, Wen Jess, Yunfei Wang, Ruifang Liu, Andrea L Kasinski, Haifa Shen, Frank J Slack, and Dean G Tang. (2021) 2021. “MicroRNA-34a: Potent Tumor Suppressor, Cancer Stem Cell Inhibitor, and Potential Anticancer Therapeutic.”. Frontiers in Cell and Developmental Biology 9: 640587. https://doi.org/10.3389/fcell.2021.640587.

Overwhelming evidence indicates that virtually all treatment-naive tumors contain a subpopulation of cancer cells that possess some stem cell traits and properties and are operationally defined as cancer cell stem cells (CSCs). CSCs manifest inherent heterogeneity in that they may exist in an epithelial and proliferative state or a mesenchymal non-proliferative and invasive state. Spontaneous tumor progression, therapeutic treatments, and (epi)genetic mutations may also induce plasticity in non-CSCs and reprogram them into stem-like cancer cells. Intrinsic cancer cell heterogeneity and induced cancer cell plasticity, constantly and dynamically, generate a pool of CSC subpopulations with varying levels of epigenomic stability and stemness. Despite the dynamic and transient nature of CSCs, they play fundamental roles in mediating therapy resistance and tumor relapse. It is now clear that the stemness of CSCs is coordinately regulated by genetic factors and epigenetic mechanisms. Here, in this perspective, we first provide a brief updated overview of CSCs. We then focus on microRNA-34a (miR-34a), a tumor-suppressive microRNA (miRNA) devoid in many CSCs and advanced tumors. Being a member of the miR-34 family, miR-34a was identified as a p53 target in 2007. It is a bona fide tumor suppressor, and its expression is dysregulated and downregulated in various human cancers. By targeting stemness factors such as NOTCH, MYC, BCL-2, and CD44, miR-34a epigenetically and negatively regulates the functional properties of CSCs. We shall briefly discuss potential reasons behind the failure of the first-in-class clinical trial of MRX34, a liposomal miR-34a mimic. Finally, we offer several clinical settings where miR-34a can potentially be deployed to therapeutically target CSCs and advanced, therapy-resistant, and p53-mutant tumors in order to overcome therapy resistance and curb tumor relapse.

Lee, Jonathan D, Joao A Paulo, Ryan R Posey, Vera Mugoni, Nikki R Kong, Giulia Cheloni, Yu-Ru Lee, et al. (2021) 2021. “Dual DNA and Protein Tagging of Open Chromatin Unveils Dynamics of Epigenomic Landscapes in Leukemia.”. Nature Methods 18 (3): 293-302. https://doi.org/10.1038/s41592-021-01077-8.

The architecture of chromatin regulates eukaryotic cell states by controlling transcription factor access to sites of gene regulation. Here we describe a dual transposase-peroxidase approach, integrative DNA and protein tagging (iDAPT), which detects both DNA (iDAPT-seq) and protein (iDAPT-MS) associated with accessible regions of chromatin. In addition to direct identification of bound transcription factors, iDAPT enables the inference of their gene regulatory networks, protein interactors and regulation of chromatin accessibility. We applied iDAPT to profile the epigenomic consequences of granulocytic differentiation of acute promyelocytic leukemia, yielding previously undescribed mechanistic insights. Our findings demonstrate the power of iDAPT as a platform for studying the dynamic epigenomic landscapes and their transcription factor components associated with biological phenomena and disease.

Lee, Soo Mi, Kenneth M Kaye, and Frank J Slack. (2021) 2021. “Cellular MicroRNA-127-3p Suppresses Oncogenic Herpesvirus-Induced Transformation and Tumorigenesis via Down-Regulation of SKP2.”. Proceedings of the National Academy of Sciences of the United States of America 118 (45). https://doi.org/10.1073/pnas.2105428118.

Kaposi's sarcoma-associated herpesvirus (KSHV) causes the endothelial tumor KS, a leading cause of morbidity and mortality in sub-Saharan Africa. KSHV-encoded microRNAs (miRNAs) are known to play an important role in viral oncogenesis; however, the role of host miRNAs in KS tumorigenesis remains largely unknown. Here, high-throughput small-RNA sequencing of the cellular transcriptome in a KS xenograft model revealed miR-127-3p as one of the most significantly down-regulated miRNAs, which we validated in KS patient tissues. We show that restoration of miR-127-3p suppresses KSHV-driven cellular transformation and proliferation and induces G1 cell cycle arrest by directly targeting the oncogene SKP2. This miR-127-3p-induced G1 arrest is rescued by disrupting the miR-127-3p target site in SKP2 messenger RNA (mRNA) using gene editing. Mechanistically, miR-127-3p-mediated SKP2 repression elevates cyclin-dependent kinase (CDK) inhibitor p21Cip1 and down-regulates cyclin E, cyclin A, and CDK2, leading to activation of the RB protein tumor suppressor pathway and suppression of the transcriptional activities of E2F and Myc, key oncoprotein transcription factors crucial for KSHV tumorigenesis. Consequently, metabolomics analysis during miR-127-3p-induced cell cycle arrest revealed significant depletion of dNTP pools, consistent with RB-mediated repression of key dNTP biosynthesis enzymes. Furthermore, miR-127-3p reconstitution in a KS xenograft mouse model suppresses KSHV-positive tumor growth by targeting SKP2 in vivo. These findings identify a previously unrecognized tumor suppressor function for miR-127-3p in KS and demonstrate that the miR-127-3p/SKP2 axis is a viable therapeutic strategy for KS.

Landau, Dan-Avi, and Frank J Slack. (2011) 2011. “MicroRNAs in Mutagenesis, Genomic Instability, and DNA Repair.”. Seminars in Oncology 38 (6): 743-51. https://doi.org/10.1053/j.seminoncol.2011.08.003.

MicroRNAs (miRNAs) are aiding our understanding of cancer biology, and are now coming close to therapeutic use as well. Here, we focus specifically on the interaction between miRNAs and genomic instability. MiRNA regulation is essential to many cellular processes, and escape from this regulatory network seems to be a common characteristic of malignant transformation. Genomic instability may preferentially target miRNAs either because of selective pressure or because of inherent vulnerability related to their location near fragile sites. Furthermore, disruption of miRNA processing elements affords a more global release from miRNA regulation. Finally, we review how miRNAs function as both effectors and modulators of the DNA damage response, intricately weaved with traditional elements such as ATM, P53, and MMR. Thus, miRNAs are important substrates for genomic instability and play a crucial role in cellular DNA sensing and repair mechanisms.

Lin, Shin-Yi, Steven M Johnson, Mary Abraham, Monica C Vella, Amy Pasquinelli, Chiara Gamberi, Ellen Gottlieb, and Frank J Slack. (2003) 2003. “The C Elegans Hunchback Homolog, Hbl-1, Controls Temporal Patterning and Is a Probable MicroRNA Target.”. Developmental Cell 4 (5): 639-50.

hunchback regulates the temporal identity of neuroblasts in Drosophila. Here we show that hbl-1, the C. elegans hunchback ortholog, also controls temporal patterning. Furthermore, hbl-1 is a probable target of microRNA regulation through its 3'UTR. hbl-1 loss-of-function causes the precocious expression of adult seam cell fates. This phenotype is similar to loss-of-function of lin-41, a known target of the let-7 microRNA. Like lin-41 mutations, hbl-1 loss-of-function partially suppresses a let-7 mutation. The hbl-1 3'UTR is both necessary and sufficient to downregulate a reporter gene during development, and the let-7 and lin-4 microRNAs are both required for HBL-1/GFP downregulation. Multiple elements in the hbl-1 3'UTR show complementarity to regulatory microRNAs, suggesting that microRNAs directly control hbl-1. MicroRNAs may likewise function to regulate Drosophila hunchback during temporal patterning of the nervous system.

K

Karimnia, Vida, Elizabeth Stanley, Christian T Fitzgerald, Imran Rizvi, Frank J Slack, and Jonathan P Celli. (2023) 2023. “Photodynamic Stromal Depletion Enhances Therapeutic Nanoparticle Delivery in 3D Pancreatic Ductal Adenocarcinoma Tumor Models.”. Photochemistry and Photobiology 99 (1): 120-31. https://doi.org/10.1111/php.13663.

Pancreatic ductal adenocarcinoma (PDAC) is among the most lethal of human malignancies. PDAC is characterized by dense fibrous stroma which obstructs drug delivery and plays complex tumor-promoting roles. Photodynamic therapy (PDT) is a light-based modality which has been demonstrated to be clinically feasible and effective for tumors of the pancreas. Here, we use in vitro heterocellular 3D co-culture models in conjunction with imaging, bulk rheology and microrheology to investigate photodegradation of non-cellular components of PDAC stroma (photodynamic stromal depletion, PSD). By measuring the rheology of extracellular matrix (ECM) before and after PDT we find that softening of ECM is concomitant with increased transport of nanoparticles (NPs). At the same time, as shown by us previously, photodestruction of stromal fibroblasts leads to enhanced tumor response to PDT. Here we specifically evaluate the capability of PSD to enhance RNA nanomedicine delivery, using a NP carrying an inhibitor of miR-21-5P, a PDAC oncomiR. We confirm improved delivery of this therapeutic NP after PSD by observation of increased expression of PDCD4, a protein target of miR-21-5P. Collectively, these results in 3D tumor models suggest that PSD could be developed to enhance delivery of other cancer therapeutics and improve tumor response to treatment.