Publications by Year: 2021

2021

Lee, Soo Mi, Kenneth M Kaye, and Frank J Slack. (2021) 2021. “Cellular MicroRNA-127-3p Suppresses Oncogenic Herpesvirus-Induced Transformation and Tumorigenesis via Down-Regulation of SKP2.”. Proceedings of the National Academy of Sciences of the United States of America 118 (45). https://doi.org/10.1073/pnas.2105428118.

Kaposi's sarcoma-associated herpesvirus (KSHV) causes the endothelial tumor KS, a leading cause of morbidity and mortality in sub-Saharan Africa. KSHV-encoded microRNAs (miRNAs) are known to play an important role in viral oncogenesis; however, the role of host miRNAs in KS tumorigenesis remains largely unknown. Here, high-throughput small-RNA sequencing of the cellular transcriptome in a KS xenograft model revealed miR-127-3p as one of the most significantly down-regulated miRNAs, which we validated in KS patient tissues. We show that restoration of miR-127-3p suppresses KSHV-driven cellular transformation and proliferation and induces G1 cell cycle arrest by directly targeting the oncogene SKP2. This miR-127-3p-induced G1 arrest is rescued by disrupting the miR-127-3p target site in SKP2 messenger RNA (mRNA) using gene editing. Mechanistically, miR-127-3p-mediated SKP2 repression elevates cyclin-dependent kinase (CDK) inhibitor p21Cip1 and down-regulates cyclin E, cyclin A, and CDK2, leading to activation of the RB protein tumor suppressor pathway and suppression of the transcriptional activities of E2F and Myc, key oncoprotein transcription factors crucial for KSHV tumorigenesis. Consequently, metabolomics analysis during miR-127-3p-induced cell cycle arrest revealed significant depletion of dNTP pools, consistent with RB-mediated repression of key dNTP biosynthesis enzymes. Furthermore, miR-127-3p reconstitution in a KS xenograft mouse model suppresses KSHV-positive tumor growth by targeting SKP2 in vivo. These findings identify a previously unrecognized tumor suppressor function for miR-127-3p in KS and demonstrate that the miR-127-3p/SKP2 axis is a viable therapeutic strategy for KS.

Dhuri, Karishma, Ravinder Reddy Gaddam, Ajit Vikram, Frank J Slack, and Raman Bahal. (2021) 2021. “Therapeutic Potential of Chemically Modified, Synthetic, Triplex Peptide Nucleic Acid-Based Oncomir Inhibitors for Cancer Therapy.”. Cancer Research 81 (22): 5613-24. https://doi.org/10.1158/0008-5472.CAN-21-0736.

miRNA-155 (miR-155) is overexpressed in various types of lymphomas and leukemias, suggesting that targeting miR-155 could be a potential platform for the development of precision medicine. Here, we tested the anticancer activity of novel, chemically modified, triplex peptide nucleic acid (PNA)-based antimiRs compared with the current state-of-the-art conventional full-length antimiRs. Next-generation modified PNAs that bound miR-155 by Watson-Crick and Hoogsteen domains possessed superior therapeutic efficacy in vivo and ex vivo compared with conventional full-length anti-miR-155. The efficacy of anti-miR-155 targeting in multiple lymphoma cell lines was comprehensively corroborated by gene expression, Western blot analysis, and cell viability-based functional studies. Finally, preclinical testing in vivo in xenograft mouse models containing lymphoma cell lines demonstrated that treatment with the miR-155-targeting next-generation antimiR resulted in a significant decrease in miR-155 expression, followed by reduced tumor growth. These findings support the effective therapeutic application of chemically modified triplex PNAs to target miR-155 to treat lymphoma. Overall, the present proof-of-concept study further implicates the potential for next-generation triplex gamma PNAs to target other miRNAs for treating cancer. SIGNIFICANCE: This study demonstrates the utility of novel oncomiR inhibitors as cancer therapeutics, providing a new approach for targeting miRNAs and other noncoding RNAs.

Mavrikaki, Maria, Jonathan D Lee, Isaac H Solomon, and Frank J Slack. (2021) 2021. “Severe COVID-19 Induces Molecular Signatures of Aging in the Human Brain.”. MedRxiv : The Preprint Server for Health Sciences. https://doi.org/10.1101/2021.11.24.21266779.

Coronavirus disease 2019 (COVID-19) is predominantly an acute respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and remains a significant threat to public health. COVID-19 is accompanied by neurological symptoms and cognitive decline, but the molecular mechanisms underlying this effect remain unclear. As aging induces distinct molecular signatures in the brain associated with cognitive decline in healthy populations, we hypothesized that COVID-19 may induce molecular signatures of aging. Here, we performed whole transcriptomic analysis of human frontal cortex, a critical area for cognitive function, in 12 COVID-19 cases and age- and sex-matched uninfected controls. COVID-19 induces profound changes in gene expression, despite the absence of detectable virus in brain tissue. Pathway analysis shows downregulation of genes involved in synaptic function and cognition and upregulation of genes involved in immune processes. Comparison with five independent transcriptomic datasets of aging human frontal cortex reveals striking similarities between aged individuals and severe COVID-19 patients. Critically, individuals below 65 years of age exhibit profound transcriptomic changes not observed among older individuals in our patient cohort. Our data indicate that severe COVID-19 induces molecular signatures of aging in the human brain and emphasize the value of neurological follow-up in recovered individuals.

Haswell, Jeffrey R, Kaia Mattioli, Chiara Gerhardinger, Philipp G Maass, Daniel J Foster, Paola Peinado, Xiaofeng Wang, Pedro P Medina, John L Rinn, and Frank J Slack. (2021) 2021. “Genome-Wide CRISPR Interference Screen Identifies Long Non-Coding RNA Loci Required for Differentiation and Pluripotency.”. PloS One 16 (11): e0252848. https://doi.org/10.1371/journal.pone.0252848.

Although many long non-coding RNAs (lncRNAs) exhibit lineage-specific expression, the vast majority remain functionally uncharacterized in the context of development. Here, we report the first described human embryonic stem cell (hESC) lines to repress (CRISPRi) or activate (CRISPRa) transcription during differentiation into all three germ layers, facilitating the modulation of lncRNA expression during early development. We performed an unbiased, genome-wide CRISPRi screen targeting thousands of lncRNA loci expressed during endoderm differentiation. While dozens of lncRNA loci were required for proper differentiation, most differentially expressed lncRNAs were not, supporting the necessity for functional screening instead of relying solely on gene expression analyses. In parallel, we developed a clustering approach to infer mechanisms of action of lncRNA hits based on a variety of genomic features. We subsequently identified and validated FOXD3-AS1 as a functional lncRNA essential for pluripotency and differentiation. Taken together, the cell lines and methodology described herein can be adapted to discover and characterize novel regulators of differentiation into any lineage.

Singh, Neha, Varune R Ramnarine, Jin H Song, Ritu Pandey, Sathish K R Padi, Mannan Nouri, Virginie Olive, et al. (2021) 2021. “The Long Noncoding RNA H19 Regulates Tumor Plasticity in Neuroendocrine Prostate Cancer.”. Nature Communications 12 (1): 7349. https://doi.org/10.1038/s41467-021-26901-9.

Neuroendocrine (NE) prostate cancer (NEPC) is a lethal subtype of castration-resistant prostate cancer (PCa) arising either de novo or from transdifferentiated prostate adenocarcinoma following androgen deprivation therapy (ADT). Extensive computational analysis has identified a high degree of association between the long noncoding RNA (lncRNA) H19 and NEPC, with the longest isoform highly expressed in NEPC. H19 regulates PCa lineage plasticity by driving a bidirectional cell identity of NE phenotype (H19 overexpression) or luminal phenotype (H19 knockdown). It contributes to treatment resistance, with the knockdown of H19 re-sensitizing PCa to ADT. It is also essential for the proliferation and invasion of NEPC. H19 levels are negatively regulated by androgen signaling via androgen receptor (AR). When androgen is absent SOX2 levels increase, driving H19 transcription and facilitating transdifferentiation. H19 facilitates the PRC2 complex in regulating methylation changes at H3K27me3/H3K4me3 histone sites of AR-driven and NEPC-related genes. Additionally, this lncRNA induces alterations in genome-wide DNA methylation on CpG sites, further regulating genes associated with the NEPC phenotype. Our clinical data identify H19 as a candidate diagnostic marker and predictive marker of NEPC with elevated H19 levels associated with an increased probability of biochemical recurrence and metastatic disease in patients receiving ADT. Here we report H19 as an early upstream regulator of cell fate, plasticity, and treatment resistance in NEPC that can reverse/transform cells to a treatable form of PCa once therapeutically deactivated.