Publications

2024

Yu, Haisheng, Jing Liu, Xia Bu, Zhiqiang Ma, Yingmeng Yao, Jinfeng Li, Tiantian Zhang, et al. (2024) 2024. “Targeting METTL3 Reprograms the Tumor Microenvironment to Improve Cancer Immunotherapy”. Cell Chemical Biology 31 (4): 776-791.e7. https://doi.org/10.1016/j.chembiol.2023.09.001.

The tumor microenvironment (TME) is a heterogeneous ecosystem containing cancer cells, immune cells, stromal cells, cytokines, and chemokines which together govern tumor progression and response to immunotherapies. Methyltransferase-like 3 (METTL3), a core catalytic subunit for RNA N6-methyladenosine (m6A) modification, plays a crucial role in regulating various physiological and pathological processes. Whether and how METTL3 regulates the TME and anti-tumor immunity in non-small-cell lung cancer (NSCLC) remain poorly understood. Here, we report that METTL3 elevates expression of pro-tumorigenic chemokines including CXCL1, CXCL5, and CCL20, and destabilizes PD-L1 mRNA in an m6A-dependent manner, thereby shaping a non-inflamed TME. Thus, inhibiting METTL3 reprograms a more inflamed TME that renders anti-PD-1 therapy more effective in several murine lung tumor models. Clinically, NSCLC patients who exhibit low-METTL3 expression have a better prognosis when receiving anti-PD-1 therapy. Collectively, our study highlights targeting METTL3 as a promising strategy to improve immunotherapy in NSCLC patients.

Lee, Jonathan D, Isaac H Solomon, Frank J Slack, and Maria Mavrikaki. (2024) 2024. “Cognition-Associated Long Noncoding RNAs Are Dysregulated Upon Severe COVID-19”. Frontiers in Immunology 15: 1290523. https://doi.org/10.3389/fimmu.2024.1290523.

Severe COVID-19 leads to widespread transcriptomic changes in the human brain, mimicking diminished cognitive performance. As long noncoding RNAs (lncRNAs) play crucial roles in the regulation of gene expression, identification of the lncRNAs differentially expressed upon COVID-19 may nominate key regulatory nodes underpinning cognitive changes. Here we identify hundreds of lncRNAs differentially expressed in the brains of COVID-19 patients relative to uninfected age/sex-matched controls, many of which are associated with decreased cognitive performance and inflammatory cytokine response. Our analyses reveal pervasive transcriptomic changes in lncRNA expression upon severe COVID-19, which may serve as key regulators of neurocognitive changes in the brain.

Miliotis, Christos, Yuling Ma, Xanthi-Lida Katopodi, Dimitra Karagkouni, Eleni Kanata, Kaia Mattioli, Nikolas Kalavros, et al. (2024) 2024. “Determinants of Gastric Cancer Immune Escape Identified from Non-Coding Immune-Landscape Quantitative Trait Loci”. Nature Communications 15 (1): 4319. https://doi.org/10.1038/s41467-024-48436-5.

The landscape of non-coding mutations in cancer progression and immune evasion is largely unexplored. Here, we identify transcrptome-wide somatic and germline 3' untranslated region (3'-UTR) variants from 375 gastric cancer patients from The Cancer Genome Atlas. By performing gene expression quantitative trait loci (eQTL) and immune landscape QTL (ilQTL) analysis, we discover 3'-UTR variants with cis effects on expression and immune landscape phenotypes, such as immune cell infiltration and T cell receptor diversity. Using a massively parallel reporter assay, we distinguish between causal and correlative effects of 3'-UTR eQTLs in immune-related genes. Our approach identifies numerous 3'-UTR eQTLs and ilQTLs, providing a unique resource for the identification of immunotherapeutic targets and biomarkers. A prioritized ilQTL variant signature predicts response to immunotherapy better than standard-of-care PD-L1 expression in independent patient cohorts, showcasing the untapped potential of non-coding mutations in cancer.

Mohd, Omar N, Yujing J Heng, Lin Wang, Abhishek Thavamani, Erica S Massicott, Gerburg M Wulf, Frank J Slack, and Patrick S Doyle. (2024) 2024. “Sensitive Multiplexed MicroRNA Spatial Profiling and Data Classification Framework Applied to Murine Breast Tumors”. Analytical Chemistry 96 (31): 12729-38. https://doi.org/10.1021/acs.analchem.4c01773.

MicroRNAs (miRNAs) are small RNAs that are often dysregulated in many diseases, including cancers. They are highly tissue-specific and stable, thus, making them particularly useful as biomarkers. As the spatial transcriptomics field advances, protocols that enable highly sensitive and spatially resolved detection become necessary to maximize the information gained from samples. This is especially true of miRNAs where the location their expression within tissue can provide prognostic value with regard to patient outcome. Equally as important as detection are ways to assess and visualize the miRNA's spatial information in order to leverage the power of spatial transcriptomics over that of traditional nonspatial bulk assays. We present a highly sensitive methodology that simultaneously quantitates and spatially detects seven miRNAs in situ on formalin-fixed paraffin-embedded tissue sections. This method utilizes rolling circle amplification (RCA) in conjunction with a dual scanning approach in nanoliter well arrays with embedded hydrogel posts. The hydrogel posts are functionalized with DNA probes that enable the detection of miRNAs across a large dynamic range (4 orders of magnitude) and a limit of detection of 0.17 zeptomoles (1.7 × 10-4 attomoles). We applied our methodology coupled with a data analysis pipeline to K14-Cre Brca1f/fTp53f/f murine breast tumors to showcase the information gained from this approach.

Struth, Eric, Maryam Labaf, Vida Karimnia, Yiran Liu, Gwendolyn Cramer, Joanna B Dahl, Frank J Slack, Kourosh Zarringhalam, and Jonathan P Celli. (2024) 2024. “Drug Resistant Pancreatic Cancer Cells Exhibit Altered Biophysical Interactions With Stromal Fibroblasts in Imaging Studies of 3D Co-Culture Models”. BioRxiv : The Preprint Server for Biology. https://doi.org/10.1101/2024.07.14.602133.

Interactions between tumor and stromal cells are well known to play a prominent roles in progression of pancreatic ductal adenocarcinoma (PDAC). As knowledge of stromal crosstalk in PDAC has evolved, it has become clear that cancer associated fibroblasts can play both tumor promoting and tumor suppressive roles through a combination of paracrine crosstalk and juxtacrine interactions involving direct physical contact. Another major contributor to dismal survival statistics for PDAC is development of resistance to chemotherapy drugs. Though less is known about how the acquisition of chemoresistance impacts upon tumor-stromal crosstalk. Here, we use 3D co-culture geometries to recapitulate juxtacrine interactions between epithelial and stromal cells. In particular, extracellular matrix (ECM) overlay cultures in which stromal cells (pancreatic stellate cells, or normal human fibroblasts) are placed adjacent to PDAC cells (PANC1), result in direct heterotypic cell adhesions accompanied by dramatic fibroblast contractility which leads to highly condensed macroscopic multicellular aggregates as detected using particle image velocimetry (PIV) analysis to quantify cell velocities over the course of time lapse movie sequences. To investigate how drug resistance impacts these juxtacrine interactions we contrast cultures in which PANC1 are substituted with a drug resistant subline (PANC1-OR) previously established in our lab. We find that heterotypic cell-cell interactions are highly suppressed in drug-resistant cells relative to the parental PANC1 cells. To investigate further we conduct RNA-seq and bioinformatics analysis to identify differential gene expression in PANC1 and PANC1-OR, which shows that negative regulation of cell adhesion molecules, consistent with increased epithelial mesenchymal transition (EMT), is also consistent with loss of hetrotypic cell-cell contact necessary for the contractile behavior observed in drug naïve cultures. Overall these findings elucidate the role of drug-resistance in inhibiting an avenue of stromal crosstalk which is associated with tumor suppression and also help to establish cell culture conditions useful for further mechanistic investigation.

Struth, Eric, Maryam Labaf, Vida Karimnia, Yiran Liu, Gwendolyn Cramer, Joanna B Dahl, Frank J Slack, Kourosh Zarringhalam, and Jonathan P Celli. (2024) 2024. “Drug Resistant Pancreatic Cancer Cells Exhibit Altered Biophysical Interactions With Stromal Fibroblasts in Imaging Studies of 3D Co-Culture Models”. Scientific Reports 14 (1): 20698. https://doi.org/10.1038/s41598-024-71372-9.

Interactions between tumor and stromal cells are well known to play prominent roles in progression of pancreatic ductal adenocarcinoma (PDAC). As knowledge of stromal crosstalk in PDAC has evolved, it has become clear that cancer associated fibroblasts can play both tumor promoting and tumor suppressive roles through a combination of paracrine crosstalk and juxtacrine interactions involving direct physical contact. Another major contributor to dismal survival statistics for PDAC is development of resistance to chemotherapy drugs, though less is known about how the acquisition of chemoresistance impacts upon tumor-stromal crosstalk. Here, we use time lapse imaging and image analysis to study how co-culture geometry impacts interactions between epithelial and stromal cells. We show that extracellular matrix (ECM) overlay cultures in which stromal cells (pancreatic stellate cells, or normal human fibroblasts) are placed adjacent to PDAC cells (PANC1) result in direct heterotypic cell adhesions accompanied by dramatic fibroblast contractility. We analyze these interactions in co-cultures using particle image velocimetry (PIV) analysis to quantify cell velocities over the course of time lapse movie sequences. We further contrast co-cultures of PANC1 with those containing a drug resistant subline (PANC1-OR) previously established in our lab and find that heterotypic cell-cell interactions are suppressed in the latter relative to the parental line. We use RNA-seq and bioinformatics analysis to identify differential gene expression in PANC1 and PANC1-OR, which shows that negative regulation of cell adhesion molecules, consistent with increased epithelial mesenchymal transition (EMT), is also correlated with reduction in the hetrotypic cell-cell contact necessary for the contractile behavior observed in drug naïve cultures. Overall these findings elucidate the role of drug-resistance in inhibiting an avenue of stromal crosstalk which is associated with tumor suppression and also help to establish cell culture conditions useful for further mechanistic investigation.

Rodrigues, Alice C, Yujing J Heng, and Frank J Slack. (2024) 2024. “Extracellular Vesicle-Encapsulated MiR-30c-5p Reduces Aging-Related Liver Fibrosis”. Aging Cell, e14310. https://doi.org/10.1111/acel.14310.

Aging is associated with decreased health span, and despite the recent advances made in understanding the mechanisms of aging, no antiaging drug has been approved for therapy. Therefore, strategies to promote a healthy life in aging are desirable. Previous work has shown that chronic treatment with extracellular vesicles (EVs) from young mice prolongs lifespan in old mice, but the mechanism of action of this effect on liver metabolism is not known. Here we investigated the role of treatment with EVs derived from young sedentary (EV-C) or exercised (EV-EX) mice in the metabolism of old mice and aimed to identify key youthful-associated microRNA (miRNA) cargos that could promote healthy liver function. We found that aged mice treated with either EV-C or EV-EX had higher insulin sensitivity, higher locomotor activity resulting in longer distance traveled in the cage, and a lower respiratory exchange ratio compared to mice treated with EVs from aged mice (EV-A). In the liver, treatment with young-derived EVs reduced aging-induced liver fibrosis. We identified miR-30c in the EVs as a possible youth-associated miRNA as its level was higher in circulating EVs of young mice. Treatment of aged mice with EVs transfected with miR-30c mimic reduced stellate cell activation in the liver and reduced fibrosis compared to EV-negative control by targeting Foxo3. Our results suggest that by delivering juvenile EVs to old mice, we can improve their liver health. Moreover, we identified miR-30c as a candidate for antiaging liver therapy.

Jagtap, Urmila, Anan Quan, Yuho Ono, Jonathan Lee, Kylie A Shen, Sergei Manakov, Gyongyi Szabo, Imad Nasser, and Frank J Slack. (2024) 2024. “MiR-21: A Therapeutic Target for Delaying Severe Liver Disease and Hepatocellular Carcinoma in High-Fat-Diet-Fed Mice”. BioRxiv : The Preprint Server for Biology. https://doi.org/10.1101/2024.09.19.613915.

Liver disease, including hepatocellular carcinoma (HCC), is a major global health concern, claiming approximately 2 million lives worldwide annually, yet curative treatments remain elusive. In this study, we aimed to investigate the role of microRNA-21-5p (miR-21) in metabolic dysfunction-associated steatotic liver disease (previously NAFLD), metabolic-associated steatohepatitis (previously NASH), and HCC within the context of a Western high-fat diet, without additional choline (HFD) and offering potential therapeutic insights. We found that reduced miR-21 levels correlated with liver disease progression in WT mice fed on HFD, while miR-21 knockout mice showed exacerbated metabolic dysfunction, including obesity, hepatomegaly, hyperglycemia, insulin resistance, steatosis, fibrosis, and HCC. Our study reveals that miR-21 plays a protective role in metabolic syndrome and in the progression of liver disease to cancer. MiR-21 directly targets Transforming growth factor beta-induced (Tgfbi), a gene also known to be significantly upregulated and a potential oncogene in HCC. Further, our study showed that intervention with the administration of a miR-21 mimic in WT livers effectively improves insulin sensitivity, steatosis, fibrosis, Tgfbi expression and tumor burden in HFD conditions. These findings indicate that miR-21 could serve as an effective strategy to delay or prevent liver disease in high-fat-diet environments.

Pradeep, Sai Pallavi, Vikas Kumar, Shipra Malik, Frank J Slack, Anisha Gupta, and Raman Bahal. (2024) 2024. “Enhancing RNA Inhibitory Activity Using Clamp-G-Modified Nucleobases”. Cell Reports. Physical Science 5 (8). https://doi.org/10.1016/j.xcrp.2024.102120.

We explore the potential of clamp-G nucleobase-modified peptide nucleic acids (cGPNAs) as microRNA and messenger RNA inhibitors. For proof of concept, we target miR-155, which is upregulated in diffuse large B cell lymphoma. cGPNA shows significant downregulation of miR-155 and the upregulation of its downstream targets in multiple lymphoma cell lines. Also, cGPNA treatment in vivo reduced tumor growth and improved survival in the U2932 cell-derived xenograft mouse model. To assess the broad application of cGPNA as an antisense modality, we also target transthyretin (TTR) mRNA. We establish a dose-dependent effect of antisense cGPNA on TTR mRNA levels. For in vivo studies, we conjugated cGPNA-based TTR antisense with lactobionic acid-based targeting ligand for in vivo liver delivery. We establish that cGPNA exhibits significant TTR protein knockdown compared to unmodified peptide nucleic acid (PNA) in vivo. Overall, we confirm that clamp-G-modified PNA analogs are a robust antisense therapy platform.

2023

Karimnia, Vida, Elizabeth Stanley, Christian T Fitzgerald, Imran Rizvi, Frank J Slack, and Jonathan P Celli. (2023) 2023. “Photodynamic Stromal Depletion Enhances Therapeutic Nanoparticle Delivery in 3D Pancreatic Ductal Adenocarcinoma Tumor Models”. Photochemistry and Photobiology 99 (1): 120-31. https://doi.org/10.1111/php.13663.

Pancreatic ductal adenocarcinoma (PDAC) is among the most lethal of human malignancies. PDAC is characterized by dense fibrous stroma which obstructs drug delivery and plays complex tumor-promoting roles. Photodynamic therapy (PDT) is a light-based modality which has been demonstrated to be clinically feasible and effective for tumors of the pancreas. Here, we use in vitro heterocellular 3D co-culture models in conjunction with imaging, bulk rheology and microrheology to investigate photodegradation of non-cellular components of PDAC stroma (photodynamic stromal depletion, PSD). By measuring the rheology of extracellular matrix (ECM) before and after PDT we find that softening of ECM is concomitant with increased transport of nanoparticles (NPs). At the same time, as shown by us previously, photodestruction of stromal fibroblasts leads to enhanced tumor response to PDT. Here we specifically evaluate the capability of PSD to enhance RNA nanomedicine delivery, using a NP carrying an inhibitor of miR-21-5P, a PDAC oncomiR. We confirm improved delivery of this therapeutic NP after PSD by observation of increased expression of PDCD4, a protein target of miR-21-5P. Collectively, these results in 3D tumor models suggest that PSD could be developed to enhance delivery of other cancer therapeutics and improve tumor response to treatment.