Publications

2023

Li, Chun, Bohyung Yoon, Giovanni Stefani, and Frank J Slack. (2023) 2023. “Lipid Kinase PIP5K1A Regulates Let-7 MicroRNA Biogenesis through Interacting With Nuclear Export Protein XPO5”. Nucleic Acids Research 51 (18): 9849-62. https://doi.org/10.1093/nar/gkad709.

MicroRNAs (miRNAs) are small non-coding RNAs first discovered in Caenorhabditis elegans. The let-7 miRNA is highly conserved in sequence, biogenesis and function from C. elegans to humans. During miRNA biogenesis, XPO5-mediated nuclear export of pre-miRNAs is a rate-limiting step and, therefore, might be critical for the quantitative control of miRNA levels, yet little is known about how this is regulated. Here we show a novel role for lipid kinase PPK-1/PIP5K1A (phosphatidylinositol-4-phosphate 5-kinase) in regulating miRNA levels. We found that C. elegans PPK-1 functions in the lin-28/let-7 heterochronic pathway, which regulates the strict developmental timing of seam cells. In C. elegans and human cells, PPK-1/PIP5K1A regulates let-7 miRNA levels. We investigated the mechanism further in human cells and show that PIP5K1A interacts with nuclear export protein XPO5 in the nucleus to regulate mature miRNA levels by blocking the binding of XPO5 to pre-let-7 miRNA. Furthermore, we demonstrate that this role for PIP5K1A is kinase-independent. Our study uncovers the novel finding of a direct connection between PIP5K1A and miRNA biogenesis. Given that miRNAs are implicated in multiple diseases, including cancer, this new finding might lead to a novel therapeutic opportunity.

Lee, Jonathan D, Bridget L Menasche, Maria Mavrikaki, Madison M Uyemura, Su Min Hong, Nina Kozlova, Jin Wei, et al. (2023) 2023. “Differences in Syncytia Formation by SARS-CoV-2 Variants Modify Host Chromatin Accessibility and Cellular Senescence via TP53”. BioRxiv : The Preprint Server for Biology. https://doi.org/10.1101/2023.08.31.555625.

COVID-19 remains a significant public health threat due to the ability of SARS-CoV-2 variants to evade the immune system and cause breakthrough infections. Although pathogenic coronaviruses such as SARS-CoV-2 and MERS-CoV lead to severe respiratory infections, how these viruses affect the chromatin proteomic composition upon infection remains largely uncharacterized. Here we used our recently developed integrative DNA And Protein Tagging (iDAPT) methodology to identify changes in host chromatin accessibility states and chromatin proteomic composition upon infection with pathogenic coronaviruses. SARS-CoV-2 infection induces TP53 stabilization on chromatin, which contributes to its host cytopathic effect. We mapped this TP53 stabilization to the SARS-CoV-2 spike and its propensity to form syncytia, a consequence of cell-cell fusion. Differences in SARS-CoV-2 spike variant-induced syncytia formation modify chromatin accessibility, cellular senescence, and inflammatory cytokine release via TP53. Our findings suggest that differences in syncytia formation alter senescence-associated inflammation, which varies among SARS-CoV-2 variants.

Yeganeh, Pourya Naderi, Yue Y Teo, Dimitra Karagkouni, Yered Pita-Juárez, Sarah L Morgan, Frank J Slack, Ioannis S Vlachos, and Winston A Hide. (2023) 2023. “PanomiR: A Systems Biology Framework for Analysis of Multi-Pathway Targeting by MiRNAs”. Briefings in Bioinformatics 24 (6). https://doi.org/10.1093/bib/bbad418.

Charting microRNA (miRNA) regulation across pathways is key to characterizing their function. Yet, no method currently exists that can quantify how miRNAs regulate multiple interconnected pathways or prioritize them for their ability to regulate coordinate transcriptional programs. Existing methods primarily infer one-to-one relationships between miRNAs and pathways using differentially expressed genes. We introduce PanomiR, an in silico framework for studying the interplay of miRNAs and disease functions. PanomiR integrates gene expression, mRNA-miRNA interactions and known biological pathways to reveal coordinated multi-pathway targeting by miRNAs. PanomiR utilizes pathway-activity profiling approaches, a pathway co-expression network and network clustering algorithms to prioritize miRNAs that target broad-scale transcriptional disease phenotypes. It directly resolves differential regulation of pathways, irrespective of their differential gene expression, and captures co-activity to establish functional pathway groupings and the miRNAs that may regulate them. PanomiR uses a systems biology approach to provide broad but precise insights into miRNA-regulated functional programs. It is available at https://bioconductor.org/packages/PanomiR.

Lee, Jonathan D, Bridget L Menasche, Maria Mavrikaki, Madison M Uyemura, Su Min Hong, Nina Kozlova, Jin Wei, et al. (2023) 2023. “Differences in Syncytia Formation by SARS-CoV-2 Variants Modify Host Chromatin Accessibility and Cellular Senescence via TP53”. Cell Reports 42 (12): 113478. https://doi.org/10.1016/j.celrep.2023.113478.

Coronavirus disease 2019 (COVID-19) remains a significant public health threat due to the ability of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants to evade the immune system and cause breakthrough infections. Although pathogenic coronaviruses such as SARS-CoV-2 and Middle East respiratory syndrome (MERS)-CoV lead to severe respiratory infections, how these viruses affect the chromatin proteomic composition upon infection remains largely uncharacterized. Here, we use our recently developed integrative DNA And Protein Tagging methodology to identify changes in host chromatin accessibility states and chromatin proteomic composition upon infection with pathogenic coronaviruses. SARS-CoV-2 infection induces TP53 stabilization on chromatin, which contributes to its host cytopathic effect. We mapped this TP53 stabilization to the SARS-CoV-2 spike and its propensity to form syncytia, a consequence of cell-cell fusion. Differences in SARS-CoV-2 spike variant-induced syncytia formation modify chromatin accessibility, cellular senescence, and inflammatory cytokine release via TP53. Our findings suggest that differences in syncytia formation alter senescence-associated inflammation, which varies among SARS-CoV-2 variants.

Dhuri, Karishma, Tibo Duran, Bodhisattwa Chaudhuri, Frank J Slack, Ajit Vikram, Peter M Glazer, and Raman Bahal. (2023) 2023. “Head-to-Head Comparison of in Vitro and in Vivo Efficacy of PHLIP-Conjugated Anti-Seed Gamma Peptide Nucleic Acids”. Cell Reports. Physical Science 4 (10). https://doi.org/10.1016/j.xcrp.2023.101584.

Gamma peptide nucleic acids (γPNAs) have recently garnered attention in diverse therapeutic and diagnostic applications. Serine and diethylene-glycol-containing γPNAs have been tested for numerous RNA-targeting purposes. Here, we comprehensively evaluated the in vitro and in vivo efficacy of pH-low insertion peptide (pHLIP)-conjugated serine and diethylene-based γPNAs. pHLIP targets only the acidic tumor microenvironment and not the normal cells. We synthesized and parallelly tested pHLIP-serine γPNAs and pHLIP-diethylene glycol γPNAs that target the seed region of microRNA-155, a microRNA that is upregulated in various cancers. We performed an all-atom molecular dynamics simulation-based computational study to elucidate the interaction of pHLIP-γPNA constructs with the lipid bilayer. We also determined the biodistribution and efficacy of the pHLIP constructs in the U2932-derived xenograft model. Overall, we established that the pHLIP-serine γPNAs show superior results in vivo compared with the pHLIP-diethylene glycol-based γPNA.

2022

Baker, Allison R, Christos Miliotis, Julia Ramírez-Moya, Talia Marc, Ioannis S Vlachos, Pilar Santisteban, and Frank J Slack. (2022) 2022. “Transcriptome Profiling of ADAR1 Targets in Triple-Negative Breast Cancer Cells Reveals Mechanisms for Regulating Growth and Invasion”. Molecular Cancer Research : MCR 20 (6): 960-71. https://doi.org/10.1158/1541-7786.MCR-21-0604.

UNLABELLED: ADARs catalyze adenosine-to-inosine (A-to-I) editing of double-stranded RNA and regulate global gene expression output through interactions with RNA and other proteins. ADARs play important roles in development and disease, and previous work has shown that ADAR1 is oncogenic in a growing list of cancer types. Here we show that ADAR1 is a critical gene for triple-negative breast cancer cells, as ADAR1 loss results in reduced growth (viability and cell cycle progression), invasion, and mammosphere formation. Whole transcriptome sequencing analyses demonstrate that ADAR1 regulates both coding and noncoding targets by altering gene expression level, A-to-I editing, and splicing. We determine that a recoding edit in filamin B (FLNB chr3:58156064) reduces the tumor suppressive activities of the protein to promote growth and invasion. We also show that several tumor suppressor miRNAs are upregulated upon ADAR1 loss and suppress cell-cycle progression and invasion. This work describes several novel mechanisms of ADAR1-mediated oncogenesis in triple-negative breast cancer, providing support to strategies targeting ADAR1 in this aggressive cancer type that has few treatment options.

IMPLICATIONS: Targeting ADAR1 and thus downstream FLNB editing and miRNA regulation represents a possible novel therapeutic strategy in triple-negative breast cancer.

Baker, Allison R, and Frank J Slack. (2022) 2022. “ADAR1 and Its Implications in Cancer Development and Treatment”. Trends in Genetics : TIG 38 (8): 821-30. https://doi.org/10.1016/j.tig.2022.03.013.

The family of adenosine deaminases acting on RNA (ADARs) regulates global gene expression output by catalyzing adenosine-to-inosine (A-to-I) editing of double-stranded RNA (dsRNA) and through interacting with RNA and other proteins. ADARs play important roles in development and disease, including an increasing connection to cancer progression. ADAR1 has demonstrated a largely pro-oncogenic role in a growing list of cancer types, and its function in cancer has been attributed to diverse mechanisms. Here, we review existing literature on ADAR1 biology and function, its roles in human disease including cancer, and summarize known cancer-associated phenotypes and mechanisms. Lastly, we discuss implications and outstanding questions in the field, including strategies for targeting ADAR1 in cancer.

Zhang, Wen Cai, Nicholas Skiados, Fareesa Aftab, Cerena Moreno, Luis Silva, Paul Joshua Anthony Corbilla, John M Asara, Aaron N Hata, and Frank J Slack. (2022) 2022. “Correction To: MicroRNA-21 Guide and Passenger Strand Regulation of Adenylosuccinate Lyase-Mediated Purine Metabolism Promotes Transition to an EGFR-TKI-Tolerant Persister State”. Cancer Gene Therapy 29 (12): 2013. https://doi.org/10.1038/s41417-022-00523-9.
Zhang, Wen Cai, Nicholas Skiados, Fareesa Aftab, Cerena Moreno, Luis Silva, Paul Joshua Anthony Corbilla, John M Asara, Aaron N Hata, and Frank J Slack. (2022) 2022. “MicroRNA-21 Guide and Passenger Strand Regulation of Adenylosuccinate Lyase-Mediated Purine Metabolism Promotes Transition to an EGFR-TKI-Tolerant Persister State”. Cancer Gene Therapy 29 (12): 1878-94. https://doi.org/10.1038/s41417-022-00504-y.

In EGFR-mutant lung cancer, drug-tolerant persister cells (DTPCs) show prolonged survival when receiving EGFR tyrosine kinase inhibitor (TKI) treatments. They are a likely source of drug resistance, but little is known about how these cells tolerate drugs. Ribonucleic acids (RNAs) molecules control cell growth and stress responses. Nucleic acid metabolism provides metabolites, such as purines, supporting RNA synthesis and downstream functions. Recently, noncoding RNAs (ncRNAs), such as microRNAs (miRNAs), have received attention due to their capacity to repress gene expression via inhibitory binding to downstream messenger RNAs (mRNAs). Here, our study links miRNA expression to purine metabolism and drug tolerance. MiR-21-5p (guide strand) is a commonly upregulated miRNA in disease states, including cancer and drug resistance. However, the expression and function of miR-21-3p (passenger strand) are not well understood. We found that upregulation of miR-21-5p and miR-21-3p tune purine metabolism leading to increased drug tolerance. Metabolomics data demonstrated that purine metabolism was the top pathway in the DTPCs compared with the parental cells. The changes in purine metabolites in the DTPCs were partially rescued by targeting miR-21. Analysis of protein levels in the DTPCs showed that reduced expression of adenylosuccinate lyase (ADSL) was reversed after the miR-21 knockdown. ADSL is an essential enzyme in the de novo purine biosynthesis pathway by converting succino-5-aminoimidazole-4-carboxamide riboside (succino-AICAR or SAICAR) to AICAR (or acadesine) as well as adenylosuccinate to adenosine monophosphate (AMP). In the DTPCs, miR-21-5p and miR-21-3p repress ADSL expression. The levels of top decreased metabolite in the DTPCs, AICAR was reversed when miR-21 was blocked. AICAR induced oxidative stress, evidenced by increased reactive oxygen species (ROS) and reduced expression of nuclear factor erythroid-2-related factor 2 (NRF2). Concurrently, miR-21 knockdown induced ROS generation. Therapeutically, a combination of AICAR and osimertinib increased ROS levels and decreased osimertinib-induced NRF2 expression. In a MIR21 knockout mouse model, MIR21 loss-of-function led to increased purine metabolites but reduced ROS scavenging capacity in lung tissues in physiological conditions. Our data has established a link between ncRNAs, purine metabolism, and the redox imbalance pathway. This discovery will increase knowledge of the complexity of the regulatory RNA network and potentially enable novel therapeutic options for drug-resistant patients.

Dhuri, Karishma, Sai Pallavi Pradeep, Jason Shi, Eleni Anastasiadou, Frank J Slack, Anisha Gupta, Xiao-Bo Zhong, and Raman Bahal. (2022) 2022. “Simultaneous Targeting of Multiple OncomiRs With Phosphorothioate or PNA-Based Anti-MiRs in Lymphoma Cell Lines”. Pharmaceutical Research 39 (11): 2709-20. https://doi.org/10.1007/s11095-022-03383-y.

PURPOSE: MicroRNAs (miRNAs) are short (  22 nts) RNAs that regulate gene expression via binding to mRNA. MiRNAs promoting cancer are known as oncomiRs. Targeting oncomiRs is an emerging area of cancer therapy. OncomiR-21 and oncomiR-155 are highly upregulated in lymphoma cells, which are dependent on these oncomiRs for survival. Targeting specific miRNAs and determining their effect on cancer cell progression and metastasis have been the focus of various studies. Inhibiting a single miRNA can have a limited effect, as there may be other overexpressed miRNAs present that may promote tumor proliferation. Herein, we target miR-21 and miR-155 simultaneously using nanoparticles delivered two different classes of antimiRs: phosphorothioates (PS) and peptide nucleic acids (PNAs) and compared their efficacy in lymphoma cell lines.

METHODS: Poly-Lactic-co-Glycolic acid (PLGA) nanoparticles (NPs) containing PS and PNA-based antimiR-21 and -155 were formulated, and comprehensive NP characterizations: morphology (scanning electron microscopy), size (differential light scattering), and surface charge (zeta potential) were performed. Cellular uptake analysis was performed using a confocal microscope and flow cytometry analysis. The oncomiR knockdown and the effect on downstream targets were confirmed by gene expression (real time-polymerase chain reaction) assay.

RESULTS: We demonstrated that simultaneous targeting with NP delivered PS and PNA-based antimiRs resulted in significant knockdown of miR-21 and miR-155, as well as their downstream target genes followed by reduced cell viability ex vivo.

CONCLUSIONS: This project demonstrated that targeting miRNA-155 and miR-21 simultaneously using nanotechnology and a diverse class of antisense oligomers can be used as an effective approach for lymphoma therapy.