Abstract
BACKGROUND: Reliable, noninvasive tools to diagnose at-risk metabolic dysfunction-associated steatohepatitis (MASH) are urgently needed to improve management. We developed a risk stratification score incorporating proteomics-derived serum markers with clinical variables to identify high-risk patients with MASH (NAFLD activity score >4 and fibrosis score >2).
METHODS: In this 3-phase proteomic study of biopsy-proven metabolic dysfunction-associated steatotic fatty liver disease, we first developed a multi-protein predictor for discriminating NAFLD activity score >4 based on SOMAscan proteomics quantifying 1305 serum proteins from 57 US patients. Four key predictor proteins were verified by ELISA in the expanded US cohort (N = 168) and enhanced by adding clinical variables to create the 9-feature MASH Dx score, which predicted MASH and also high-risk MASH (F2+). The MASH Dx score was validated in 2 independent, external cohorts from Germany (N = 139) and Brazil (N = 177).
RESULTS: The discovery phase identified a 6-protein classifier that achieved an AUC of 0.93 for identifying MASH. Significant elevation of 4 proteins (THBS2, GDF15, SELE, and IGFBP7) was verified by ELISA in the expanded discovery and independently in the 2 external cohorts. MASH Dx score incorporated these proteins with established MASH risk factors (age, body mass index, ALT, diabetes, and hypertension) to achieve good discrimination between MASH and metabolic dysfunction-associated steatotic fatty liver disease without MASH (AUC: 0.87-discovery; 0.83-pooled external validation cohorts), with similar performance when evaluating high-risk MASH F2-4 (vs. MASH F0-1 and metabolic dysfunction-associated steatotic fatty liver disease without MASH).
CONCLUSIONS: The MASH Dx score offers the first reliable noninvasive approach combining novel, biologically plausible ELISA-based fibrosis markers and clinical parameters to detect high-risk MASH in patient cohorts from the United States, Brazil, and Europe.