Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease globally. miRNAs (miRs) regulate various cellular events that lead to NAFLD. In this study we tested the hypothesis that miR-155 is an important regulator of steatohepatitis and fibrosis pathways. Wild type (WT) or miR-155 deficient (KO) mice received a high fat-high cholesterol-high sugar-diet (HF-HC-HS) for 34 weeks and liver tissues were analyzed. In patients with nonalcoholic steatohepatitis and in the mouse model of HF-HC-HS diet we found increased miR-155 levels in the liver compared to normal livers. Upon HF-HC-HS diet feeding, miR-155 KO mice displayed less liver injury, decreased steatosis, and attenuation in fibrosis compared to WT mice. ALT, triglyceride levels, and genes involved in fatty acid metabolic pathway were increased in WT mice whereas miR-155 KO mice showed attenuation in these parameters. HF-HC-HS diet-induced significant increase in the expression of NLRP3 inflammasome components in the livers of WT mice compared to chow fed diet. Compared to WT mice, miR-155 KO showed attenuated induction in the NLRP3, ASC, and caspase1 inflammasome expression on HF-HC-HS diet. Fibrosis markers such as collagen content and deposition, αSMA, Zeb2, and vimentin were all increased in WT mice and miR-155 KO mice showed attenuated fibrosis marker expression. Overall, our findings highlight a role for miR-155 in HF-HC-HS diet-induced steatosis and liver fibrosis.
Publications by Year: 2021
2021
Exosomes are membrane vesicles released by various cell types into the extracellular space under different conditions including alcohol exposure. Exosomes are involved in intercellular communication and as mediators of various diseases. Alcohol use causes oxidative stress that promotes exosome secretion. Here, we elucidated the effects of alcohol on exosome biogenesis and secretion using human hepatocytes. We found that alcohol treatment induces the expression of genes involved in various steps of exosome formation. Expression of Rab proteins such as Rab1a, Rab5c, Rab6, Rab10, Rab11, Rab27a and Rab35 were increased at the mRNA level in primary human hepatocytes after alcohol treatment. Rab5, Rab6 and Rab11 showed significant induction in the livers of patients with alcohol-associated liver disease. Further, alcohol treatment also led to the induction of syntenin, vesicle-associated membrane proteins (VAMPs), and syntaxin that all play various roles in exosome biogenesis and secretion. VAMP3, VAMP5, VAPb, and syntaxin16 mRNA transcripts were increased in alcohol treated cells and in the livers of alcohol-associated liver disease (ALD) patients. Induction in these genes was associated with increases in exosome secretion in alcohol treated hepatocytes. We found that hepatocyte enriched miR-192 and miR-122 levels were significantly decreased in alcohol treated hepatocytes whereas their levels were increased in the cell-free supernatant. The primary transcripts of miR-192 and miR-122 were reduced in alcohol treated hepatocytes, suggesting alcohol partially affects these miRNAs at the transcriptional level. We found that miR-192 has putative binding sites for genes involved in exosome secretion. Inhibition of miR-192 in human hepatoma cells caused a significant increase in Rab27a, Rab35, syntaxin7 and syntaxin16 and a concurrent increase in exosome secretion, suggesting miR-192 regulates exosomes release in hepatocytes. Collectively, our results reveal that alcohol modulates Rabs, VAMPs and syntaxins directly and partly via miR-192 to induce exosome machinery and release.
microRNAs (miRs) are small regulatory RNAs that are frequently deregulated in liver disease. Liver fibrosis is characterized by excessive scarring caused by chronic inflammatory processes. In this study, we determined the functional role of miR-132 using a locked nucleic acid (LNA)-anti-miR approach in liver fibrosis. A significant induction in miR-132 levels was found in mice treated with CCl4 and in patients with fibrosis/cirrhosis. Inhibition of miR-132 in mice with LNA-anti-miR-132 caused decreases in CCl4-induced fibrogenesis and inflammatory phenotype. An attenuation in collagen fibers, α SMA, MCP1, IL-1β, and Cox2 was found in LNA-anti-miR-132-treated mice. CCl4 treatment increased caspase 3 activity and extracellular vesicles (EVs) in control but not in anti-miR-132-treated mice. Inhibition of miR-132 was associated with augmentation of MMP12 in the liver and Kupffer cells. In vivo and in vitro studies suggest miR-132 targets SIRT1 and inflammatory genes. Using tumor cancer genome atlas data, an increase in miR-132 was found in hepatocellular carcinoma (HCC). Increased miR-132 levels were associated with fibrogenic genes, higher tumor grade and stage, and unfavorable survival in HCC patients. Therapeutic inhibition of miR-132 might be a new approach to alleviate liver fibrosis, and treatment efficacy can be monitored by observing EV shedding.
BACKGROUND & AIMS: While abstinence-promoting behavioral and pharmacotherapies are part of the therapeutic foundation for alcohol use disorder (AUD) and alcohol-associated liver disease (ALD), these therapies, along with alcohol screening and education, are often underutilized. Our aim was to examine provider attitudes and practices for alcohol screening, treatment and education in patients with liver disease.
METHODS: We conducted a survey of primarily (89%) hepatology and gastroenterology providers within (80%) and outside the United States (20%). Surveys were sent to 921 providers with 408 complete responses (44%), of whom 343 (80%) work in a tertiary liver transplant center.
RESULTS: While alcohol screening rates in liver disease patients was nearly universal, less than half of providers reported practicing with integrated addiction providers, using alcohol biomarkers and screening tools. Safe alcohol use by liver disease patients was felt to exist by 40% of providers. While 60% of providers reported referring AUD patients for behavioral therapy, 71% never prescribed AUD pharmacotherapy due to low comfort (84%). Most providers (77%) reported low addiction education and 90% desired more during GI/hepatology fellowship training. Amongst prescribers, baclofen was preferred, but with gaps in pharmacotherapy knowledge. Overall, there was low adherence to the 2019 AASLD practice guidance for ALD, although higher in hepatologists and experienced providers.
CONCLUSIONS: While our survey of hepatology and gastroenterology providers demonstrated higher rates of alcohol screening and referrals for behavioral therapy, we found low rates of prescribing AUD pharmacotherapy due to knowledge gaps from insufficient education. Further studies are needed to assess interventions to improve provider alignment with best practices for treating patients with AUD and ALD.
Patients with acutely decompensated cirrhosis have a dismal prognosis and frequently progress to acute-on-chronic liver failure, which is characterised by hepatic and extrahepatic organ failure(s). The pathomechanisms involved in decompensation and disease progression are still not well understood, and as specific disease-modifying treatments do not exist, research to identify novel therapeutic targets is of the utmost importance. This review amalgamates the latest knowledge on disease mechanisms that lead to tissue injury and extrahepatic organ failure - such as systemic inflammation, mitochondrial dysfunction, oxidative stress and metabolic changes - and marries these with the classical paradigms of acute decompensation to form a single paradigm. With this detailed breakdown of pathomechanisms, we identify areas for future research. Novel disease-modifying strategies that break the vicious cycle are urgently required to improve patient outcomes.
Neutrophils, the most abundant type of leukocyte in human blood, play a major role in host defense against invading pathogens and in sterile injury. Neutrophil infiltration is characteristic of inflammation because of its antimicrobial and cytotoxic activities. Neutrophils also actively participate in the resolution of inflammation and subsequent tissue repair by acting as a critical mediator between the inflammation and resolution phases of tissue damage. However, neutrophils that are consistently exposed to inflammatory conditions lose their self-resolving capabilities and maintain an inflammatory phenotype, further exacerbating tissue damage. The current review describes how neutrophils interact with tissue microenvironments and acquire disease-specific phenotypes under chronic inflammatory conditions. Here, we aim to provide a better understanding of neutrophil-mediated pathogenesis of various liver diseases.
COVID-19, which is caused by SARS-CoV-2, can result in acute respiratory distress syndrome and multiple organ failure1-4, but little is known about its pathophysiology. Here we generated single-cell atlases of 24 lung, 16 kidney, 16 liver and 19 heart autopsy tissue samples and spatial atlases of 14 lung samples from donors who died of COVID-19. Integrated computational analysis uncovered substantial remodelling in the lung epithelial, immune and stromal compartments, with evidence of multiple paths of failed tissue regeneration, including defective alveolar type 2 differentiation and expansion of fibroblasts and putative TP63+ intrapulmonary basal-like progenitor cells. Viral RNAs were enriched in mononuclear phagocytic and endothelial lung cells, which induced specific host programs. Spatial analysis in lung distinguished inflammatory host responses in lung regions with and without viral RNA. Analysis of the other tissue atlases showed transcriptional alterations in multiple cell types in heart tissue from donors with COVID-19, and mapped cell types and genes implicated with disease severity based on COVID-19 genome-wide association studies. Our foundational dataset elucidates the biological effect of severe SARS-CoV-2 infection across the body, a key step towards new treatments.
BACKGROUND AND AIMS: Given the lack of effective therapies and high mortality in acute alcohol-associated hepatitis (AH), it is important to develop rationally designed biomarkers for effective disease management. Complement, a critical component of the innate immune system, contributes to uncontrolled inflammatory responses leading to liver injury, but is also involved in hepatic regeneration. Here, we investigated whether a panel of complement proteins and activation products would provide useful biomarkers for severity of AH and aid in predicting 90-day mortality.
APPROACH AND RESULTS: Plasma samples collected at time of diagnosis from 254 patients with moderate and severe AH recruited from four medical centers and 31 healthy persons were used to quantify complement proteins by enzyme-linked immunosorbent assay and Luminex arrays. Components of the classical and lectin pathways, including complement factors C2, C4b, and C4d, as well as complement factor I (CFI) and C5, were reduced in AH patients compared to healthy persons. In contrast, components of the alternative pathway, including complement factor Ba (CFBa) and factor D (CFD), were increased. Markers of complement activation were also differentially evident, with C5a increased and the soluble terminal complement complex (sC5b9) decreased in AH. Mannose-binding lectin, C4b, CFI, C5, and sC5b9 were negatively correlated with Model for End-Stage Liver Disease score, whereas CFBa and CFD were positively associated with disease severity. Lower CFI and sC5b9 were associated with increased 90-day mortality in AH.
CONCLUSIONS: Taken together, these data indicate that AH is associated with a profound disruption of complement. Inclusion of complement, especially CFI and sC5b9, along with other laboratory indicators, could improve diagnostic and prognostic indications of disease severity and risk of mortality for AH patients.