Impaired wound healing in the diabetic foot is a major problem often leading to amputation. Mast cells have been shown to regulate wound healing in diabetes. We developed an indole-carboxamide type mast cell stabilizer, MCS-01, which proved to be an effective mast cell degranulation inhibitor in vitro and can be delivered topically for prolonged periods through controlled release by specifically designed alginate bandages. In diabetic mice, both pre- and post-wounding, topical MCS-01 application accelerated wound healing comparable to that achieved with systemic mast cell stabilization. Moreover, MCS-01 altered the macrophage phenotype, promoting classically activated polarization. Bulk transcriptome analysis from wounds treated with MCS-01 or placebo showed that MCS-01 significantly modulated the mRNA and microRNA profile of diabetic wounds, stimulated upregulation of pathways linked to acute inflammation and immune cell migration, and activated the NF-κB complex along with other master regulators of inflammation. Single-cell RNA sequencing analysis of 6,154 cells from wounded and unwounded mouse skin revealed that MCS-01 primarily altered the gene expression of mast cells, monocytes, and keratinocytes. Taken together, these findings offer insights into the process of diabetic wound healing and suggest topical mast cell stabilization as a potentially successful treatment for diabetic foot ulceration.
Publications
2020
INTRODUCTION: Indoleamine 2,3-dioxygenase 1 (IDO1) has been considered as an attractive intracellular target for the development of small-molecule cancer immunotherapy. Results in human clinical studies indicated that the first-generation IDO1 inhibitor epacadostat lacked anticancer activity when combined with the anti-PD-1 antibody pembrolizumab. Epacadostat inhibits IDO1 activity by forming a tertiary IDO1-heme-inhibitor complex. Recently, IDO1 inhibitors capable of displacing the heme group to form a binary high-affinity complex have been discovered and investigated in humans.
AREAS COVERED: Structures, mode of action, preclinical activities, and status of clinical development are discussed and compared between the two classes of IDO1 inhibitors that bind to IDO1 protein in the presence (holo-IDO1) or absence (apo-IDO1) of the heme group, respectively. By selectively displacing the heme from IDO1 enzymes, apo-IDO1 inhibitors demonstrate high target selectivity, durable target engagement, and exceptional potency in cellular assays. Data from publications, patent disclosures, and conference proceedings as recent as 2019 are analyzed and summarized.
EXPERT OPINION: The outcomes in cancer patients for the first-generation IDO1 inhibitors were disappointing. However, the unique mode of action by the heme-displacing IDO1 inhibitors might help their successful clinical translation and provide a novel class of anticancer drugs for cancer immunotherapy.
2019
To aid in generating complex and diverse natural glycan libraries for functional glycomics, more efficient and reliable methods are needed to derivatize glycans. Here we present our development of a reversible, cleavable bifunctional linker 3-(methoxyamino)propylamine (MAPA). As the fluorenylmethyloxycarbonate (Fmoc) version (F-MAPA), it is highly fluorescent and efficiently derivatizes free reducing glycans to generate closed-ring derivatives that preserve the structural integrity of glycans. A library of glycans were derivatized and used to generate a covalent glycan microarray using N-hydroxysuccinimide derivatization. The array was successfully interrogated by a variety of lectins and antibodies, demonstrating the importance of closed-ring chemistry. The glycan derivatization was also performed at large scale using milligram quantities of glycans and excess F-MAPA, and the reaction system was successfully recycled up to five times, without an apparent decrease in conjugation efficiency. The MAPA-glycan is also easy to link to protein to generate neoglycoproteins with equivalent glycan densities. Importantly, the MAPA linker can be reversibly cleaved to regenerate free reducing glycans for detailed structural analysis (catch-and-release), often critical for functional studies of undefined glycans from natural sources. The high conjugation efficiency, bright fluorescence, and reversible cleavage of the linker enable access to natural glycans for functional glycomics.
2018
Metastases account for more than 90% of all cancer deaths and respond poorly to most therapies. There remains an urgent need for new therapeutic modalities for the treatment of advanced metastatic cancers. The benzimidazole methylcarbamate drugs, commonly used as anti-helmitics, have been suggested to have anticancer activity, but progress has been stalled by their poor water solubility and poor suitability for systemic delivery to disseminated cancers. We synthesized and characterized the anticancer activity of novel benzimidazoles containing an oxetane or an amine group to enhance solubility. Among them, the novel oxetanyl substituted compound 18 demonstrated significant cytotoxicity toward a variety of cancer cell types including prostate, lung, and ovarian cancers with strong activity toward highly aggressive cancer lines (IC50: 0.9-3.8 μM). Compound 18 achieved aqueous solubility of 361 μM. In a mouse xenograft model of a highly metastatic human prostate cancer, compound 18 (30 mg/kg) significantly inhibited the growth of established tumors (T/C: 0.36) without noticeable toxicity.
INTRODUCTION: Indoleamine 2,3-dioxygenase 1 (IDO1) is overexpressed by cancer cells and the antigen presenting dendritic cells in the tumor microenvironment (TME). Activation of IDO1 depletes tryptophan and produces kynurenine, which induces T cell anergy and suppresses tumor control by the immune system. When combined with an immune checkpoint inhibitor, IDO1 inhibitors have shown promising anticancer activity in preclinical tumor models as well as in early stage clinical trials.
AREAS COVERED: IDO1 inhibitors disclosed in the patent literature from 2013-2017 are categorized, when applicable, according to their structural similarity to the clinical development candidates indoximod and PF-06840003, navoximod, epacadostat, KHK2455 and aryl-1,2-diamines, and BMS-986205 among others, respectively. Representative structures and their IDO1 inhibitory activity are presented to highlight the novelty and activity. Finally, the reported cocrystal structures were analyzed to provide insights for inhibitor-enzyme interactions and guidance for the design and discovery of next generation inhibitors.
EXPERT OPINION: This review demonstrates that the structural diversity of new IDO1 inhibitors could be expanded via a number of approaches.
Indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase 2 (TDO2) catalyze the commitment step of the kynurenine (KYN) metabolic pathway. Traditionally the immunosuppressive effect of IDO1 has been attributed mainly to reduced levels of tryptophan, which activates the kinase general control nonderepressible 2 (GCN2). Emerging data have shed light on an unexpected role of the ligand-activated transcription factor aryl hydrocarbon receptor (AhR) in transducing the tumor immune escape function imparted by IDO1 and TDO2. AhR activation by the IDO1/TDO2 product KYN leads to the generation of immune-tolerant dendritic cells (DCs) and regulatory T cells, which collectively foster a tumor immunological microenvironment that is defective in recognizing and eradicating cancer cells. Multiple IDO1 inhibitors have been evaluated in clinical trials. There are novel modalities downstream of IDO1/TDO2 for pharmacological interventions. We review recent progress and future perspectives in targeting the IDO1/TDO2-KYN-AhR signaling pathway for the development of novel cancer immunotherapies.
2017
Aberrant cellular metabolism drives cancer proliferation and metastasis. ATP citrate lyase (ACL) plays a critical role in generating cytosolic acetyl CoA, a key building block for de novo fatty acid and cholesterol biosynthesis. ACL is overexpressed in cancer cells, and siRNA knockdown of ACL limits cancer cell proliferation and reduces cancer stemness. We characterized a new class of ACL inhibitors bearing the key structural feature of the natural product emodin. Structure-activity relationship (SAR) study led to the identification of 1d as a potent lead that demonstrated dose-dependent inhibition of proliferation and cancer stemness of the A549 lung cancer cell line. Computational modeling indicates this class of inhibitors occupies an allosteric binding site and blocks the entrance of the substrate citrate to its binding site.
Aberrant activation of mast cells contributes to the development of numerous diseases including cancer, autoimmune disorders, as well as diabetes and its complications. The influx of extracellular calcium via the highly calcium selective calcium-release activated calcium (CRAC) channel controls mast cell functions. Intracellular calcium homeostasis in mast cells can be maintained via the modulation of the CRAC channel, representing a critical point for therapeutic interventions. We describe the structure-activity relationship study (SAR) of indazole-3-carboxamides as potent CRAC channel blockers and their ability to stabilize mast cells. Our SAR results show that the unique regiochemistry of the amide linker is critical for the inhibition of calcium influx, the release of the pro-inflammatory mediators β-hexosaminidase and tumor necrosis factor α by activated mast cells. Thus, the indazole-3-carboxamide 12d actively inhibits calcium influx and stabilizes mast cells with sub-μM IC50. In contrast, its reverse amide isomer 9c is inactive in the calcium influx assay even at 100μM concentration. This requirement of the specific 3-carboxamide regiochemistry in indazoles is unprecedented in known CRAC channel blockers. The new structural scaffolds described in this report expand the structural diversity of the CRAC channel blockers and may lead to the discovery of novel immune modulators for the treatment of human diseases.
The enzyme ATP citrate lyase (ACL) catalyzes the formation of cytosolic acetyl CoA, the starting material for de novo lipid and cholesterol biosynthesis. The dysfunction and upregulation of ACL in numerous cancers makes it an attractive target for developing anticancer therapies. ACL inhibition by shRNA knockdown limits cancer cell proliferation and reduces cancer stemness. We designed and implemented a dual docking protocol to select virtual ACL inhibitors that were scored among the top 10 percentiles by both the Autodock Vina and the Glamdock algorithms. Via this in silico screens of a focused furoic acid library, we discovered four subtypes of furans and benzofurans as novel ACL inhibitors. The hit rate of our in silico protocol was 45.8% with 11 of 24 virtual hits confirmed as active in an in vitro ACL enzymatic assay. The IC50 of the most potent ACL inhibitor A1 is 4.1μM. Our results demonstrated remarkable hit rate by the dual docking approach and provided novel chemical scaffolds for the development of ACL inhibitors for the treatment of cancer.